Design Patterns

Software Engineering for Engineers
Summer 2009

Bernd Bruegge
Applied Software Engineering
Technische Universitaet Muenchen

Outline
 Design Patterns

Usefulness of design patterns, Design Pattern Categories

e Patterns covered in the lecture

Composite Pattern: Modeling of dynamic aggregates
Adapter Pattern: Interface to old systems (legacy systems)

Observer Pattern: Maintain consistency across redundant
state, also called Publisher-Subscriber

Bridge Pattern: Interfacing to existing and future systems
Facade Pattern: Interfacing to subsystems
Proxy Pattern: Reduces the cost of accessing objects

Strategy Pattern: Interface to a task implemented by
different algorithms

Not covered in the lecture, but in the backup slides:
Template, Abstract Factory, Builder.

Bernd Bruegge Software Engineering for Engineers Summer 2009 2

Design pattern

A design pattern is...

...a template solution to a recurring design
problem

e Look before re-inventing the wheel just one more time

...an example of modifiable design
* Learning to design starts by studying other designs

...reusable design knowledge

« 7+4-2 classes and their associations
« Often actually more 5+-2 classes.

Bernd Bruegge Software Engineering for Engineers Summer 2009 3

What makes Design Patterns Good?

They are generalizations of design knowledge
from existing systems

They provide a shared vocabulary to designers

They provide examples of reusable designs
» Inheritance (abstract classes)
* Delegation (or aggregation)

Bernd Bruegge Software Engineering for Engineers Summer 2009

Categorization of Design Patterns

e reduce coupling between two or more classes
* introduce an abstract class to enable future extensions
e encapsulate complex structures

« allow a choice between algorithms and the assignment
of responsibilies to objects ("Who does what?”)

» characterize complex control flows that are difficult to
follow at runtime

» allow to abstract from complex instantiation processes

 Make the system independent from the way its objects
are created, composed and represented.

Bernd Bruegge Software Engineering for Engineers Summer 2009 5

Composite
Pattern

i

Adapter
Pattern

Patterns

Bernd Bruegge

Structural Behavioral Creational
Patterns Patterns Patterns
Command Strategy Builder
Pattern Pattern Pattern
<
O:s:rver Abstract Factory
atiom Pattern
Proxy
Template
Pattern Pattern
Facade
Pattern
Bridge
Pattern
Software Engineering for Engineers Summer 2009 II'

A Game: Gel-15

Start with the nine numbers 1,2,3,4, 5,6, 7, 8
and 9.

You and your opponent take alternate turns, each
taking a number

Each number can be taken only once: If you
opponent has selected a number, you cannot also
take it.

The first person to have any three numbers that
t%ql 15 wins the game

Example:

Opponent: Opponent
Wins!

Bernd Bruegge Software Engineering for Engineers Summer 2009 7

Characteristics of Get-15

« Hard to play,

e The game is especially hard, if you are not
allowed to write anything done.

e Why?

« All the numbers need to be scanned to see if you have
won/lost

« It is hard to see what the opponent will take if you take
a certain number

 The choice of the number depends on all the previous
numbers

 Not easy to devise an simple strategy

Bernd Bruegge Software Engineering for Engineers Summer 2009 8

Another Game: Tic-Tac-Toe

Bernd Bruegge

YOU ARE O

Source: http://boulter.com/ttt/index.cgi

Software Engineering for Engineers Summer 2009

A Draw Sitation

YOU ARE

Bernd Bruegge Software Engineering for Engineers Summer 2009

10

Strategy for determining a winning move

ollie
<

Bernd Bruegge Software Engineering for Engineers Summer 2009

11

Winning Situations for Tic-Tac-Toe

Winning

Patterns

iseliis
(i
/1 =

Bernd Bruegge Software Engineering for Engineers Summer 2009 12

Tic-Tac-Toe is “Easy”

« Why? Reduction of complexity through patterns
symmetry

« Patterns: Knowing the following three patterns,
the player can anticipate the opponents move

e Symmetry:
e The player needs to remember only these
three patterns to deal with 8 different game
§i at |0|1a
ver needs to memorize only 3
opening moves and their responses

Bernd Bruegge Software Engineering for Engineers Summer 2009 13

Get-15 and Tic-Tac-Toe are identical

problems

 Any Get-15 solution is a solution to a tic-tac-toe

problem

 Any tic-tac-toe solution is a solution to a Get-15

problem

« To see the relationship between the two games, we

8| 1| 6

31| 5| 7

411 91| 2

digits into the following pattern

Bernd Bruegge Software Engineering for Engineers Summer 2009 14

) You 1 5 3 8
+Opponentz 6 9 7 y)

81| 1|| 6

)
31| 5(7 O
4

41 9| 2

HOIC
LHE

Bernd Bruegge Software Engineering for Engineers Summer 2009

During object modeling we do many
transformations and changes to the object
model

It is important to make sure the object model
stays simple!

Design patterns are used to keep system models
simple (and reusable).

ernd Bruegge Software Engineering for Engineers Summer 2009 16

Modeling Heuristics

 Modeling must address our mental limitations:
e Our short-term memory has only limited capacity (7+-2)

« Good Models deal with this limitation, because they
* Do not tax the mind
* A good model requires a small mental effort
 Reduce complexity

 Turn complex tasks into easy ones (choice of
representation)

» Use of symmetries
« Use abstractions
e« Taxonomies
 Have organizational structure:

« Memory limitations are overcome with an appropriate
representation (“natural model”).

Bernd Bruegge Software Engineering for Engineers Summer 2009 17

What is common between these
definitions? .

Recursion
e Definition Software System

* A software system consists of subsystems which are
either other subsystems or collection of classes

* Definition Software Lifecycle

* A software lifecycle consists of a set of development
activities which are either other activities or
collection of tasks.

Bernd Bruegge Software Engineering for Engineers Summer 2009 18

Recursion

e Recursion

* An abstraction being defined is used within its own
definition

* More general: Description of an abstraction based
on self-similarity.

Bernd Bruegge Software Engineering for Engineers Summer 2009 19

What is common between these
definitions?

e Definition Software System

» A software system consists of subsystems which are
either other subsystems or collection of classes

« Composite: Subsystem

* A software system consists of subsystems which
consists of subsystems, which consists of
subsystems, which...

e Base case: Class

e Definition Software Lifecycle

» The software lifecycle consists of a set of development
af(__:tivitil?s which are either other activities or collection
of tasks

o« Composite: Activity

 The software lifecycle consists of activities which
cohn_sihst of activities, which consist of activities,
which....

e Base case: Task.

Bernd Bruegge Software Engineering for Engineers Summer 2009 20

Modeling a Software System

Software

System

A

Class

Subsystem

Bernd Bruegge Software Engineering for Engineers Summer 2009

Children

21

Modeling the Software Lifecycle

Bernd Bruegge

Software

Lifecycle

A

Task

Activity

Software Engineering for Engineers Summer 2009

Children

22

Infroducing the Composite Pattern

« The pattern models tree structures that represent
hierarchies of objects with arbitrary depth and width

e The Composite Pattern lets a client treat individual
objects and compositions of these objects uniformly

Client

Bernd Bruegge

Component

A

Leaf

Operation()

Composite :
Child
Operation() raren
AddComponent
RemoveComponent()
GetChild()

Software Engineering for Engineers Summer 2009

Composite
Pattern

i

Adapter
Pattern

Patterns

Bernd Bruegge

Structural Behavioral Creational
Patterns Patterns Patterns
Command Strategy Builder
Pattern Pattern Pattern
Y
O:s:rver Abstract Factory
ST Pattern
: a"::rn Template
Pattern
Facade
Pattern
Bridge
Pattern
Software Engineering for Engineers Summer 2009 II'

24

The Composite Paiterns models dynamic

aggregates

Fixed Structure:

Car

Y

* |

s

Organization Chart (variable aggregate):

University £

Doors Wheels| | Battery Engine
* *
School [Department
Program
1.
" |
Block
|

Compound Simple
Statement Statement

Bernd Bruegge Software Engineering for Engineers Summer 2009

25

Graphic Applications also Composite

Patterns

e The Graphic Class represents both primitives (Line,

Square) and their containers (Picture)

Graphic

A

Client
Line Square
Draw() Draw()

Bernd Bruegge

Picture

Draw()

Add(Graphic g)
RemoveGraphic)
GetChild(int)

Software Engineering for Engineers Summer 2009

Children

26

Bernd Bruegge

Software Engineering for Engineers Summer 2009

27

Composite
Pattern

i

Adapter
Pattern

Patterns

Bernd Bruegge

Structural Behavioral Creational
Patterns |:> Patterns Patterns
Command Strategy Builder
Pattern Pattern Pattern
Y
|:> O:s:rver Abstract Factory
N Pattern
Proxy
Template
Pattern Pattern
Facade
Pattern
Bridge
Pattern
Software Engineering for Engineers Summer 2009 II'

28

Observer Pattern Motivation PO"%O“O

Stock
e Problem: E

often
« Example: A Portfolio of stocks

« We want to provide multiple views of the current
state of the portfolio

« Example:Histogram view, pie chart view, time
line view, alarm

e Requirements:

 The system should maintain consistency across
the (redundant) views, whenever the state of the
observed object changes

 The system design should be highly extensible

o It should be possible to add new views
without having to recompile the observed
object or the existing views.

Bernd Bruegge Software Engineering for Engineers Summer 2009 E

Example: The File Name of a Presentatigx

3 Possibilities fo change the File Namg@@FtAIE
s L9_DeSignPatterns2x 3,7 MB [<>][/)—/@‘H"l}/'[[=]

Mogified: Today at 10:03

- Name - Date Modified
|~ 5 Design Patterns Today, 09:42
‘ el c Today, 09:40

Today, 10:03 4
Today, 09,

e « Powerpoint
L9_DesignPatterns2.ppt

View

P Spotiight Comments:

¥ G¢heral:

Kind: Microsoft PowerPoint document
Size: 3,7 MB on disk (3.833.856
bytes)

Where: fUsers/berndbruegge/
Teaching/ SS 2007 Software
Engineering | (EIST)/Lectures/
5 Design Patterns

Created: Mittwoch, 16. Mai 2007 10:49

Modified: Today at 10:03

Color label: (x| @ © Qe 00

xadmple: The File Name of a Presentation

[Stationery Pad
! Locked

¥ More Info:
Last opened: Today at 09:42

L9_DesignPatterns2.ppt

What happens
if | change
the file name of this

presentation in List View

to foo?

p Open with:
P Preview:

¥ Ownership & Permissions:

ou can Read & Write f 3,
InfoView &

er: berndbruegge 8

Read & Write @

Access:

Group: staff
Access: Read only B

Intraduztian Inko Sofbrare Englnesring Sunsnser 2007

OXers: Read only m2007 Barnd Br wgse

44 pr 4

B =5 8 Slide 59 of 90

Bernd Bruegge Software Engineering for Engineers Summer 2009 30

Observer Pattern: Decouple Object from its Views

Subject Observer

<> observers *

subscribe(subscriber)

unsubscribe(subscriber) update()
gotil) Solution Domain 7\
(Design Knowledge)
ConcreteSubject ConcreteObserver
state <—— " ———"——————— observeState
getState() Application Domain dat
setState() (Application Knowledge) Update()

« The Subject ("Publisher”) represents the entity object

« Observers ("Subscribers”) attach to the Subject by calling subscribe()

« Each Observer has a different view of the state of the entity object
 The state is contained in the subclass ConcreteSubject

 The state can be obtained and set by subclasses of type
ConcreteObserver.

