
1
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Design Patterns

Bernd Bruegge
 Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering for Engineers
Summer 2009

2
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Outline
•  Design Patterns

•  Usefulness of design patterns, Design Pattern Categories

•  Patterns covered in the lecture
•  Composite Pattern: Modeling of dynamic aggregates
•  Adapter Pattern: Interface to old systems (legacy systems)
•  Observer Pattern: Maintain consistency across redundant

state, also called Publisher-Subscriber
•  Bridge Pattern: Interfacing to existing and future systems
•  Façade Pattern: Interfacing to subsystems
•  Proxy Pattern: Reduces the cost of accessing objects
•  Strategy Pattern: Interface to a task implemented by

different algorithms
•  Not covered in the lecture, but in the backup slides:

Template, Abstract Factory, Builder.

3
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Design pattern

A design pattern is…

…a template solution to a recurring design
problem

•  Look before re-inventing the wheel just one more time

…an example of modifiable design
•  Learning to design starts by studying other designs

…reusable design knowledge
•  7+-2 classes and their associations
•  Often actually more 5+-2 classes.

4
Bernd Bruegge
Software Engineering for Engineers Summer 2009

What makes Design Patterns Good?

•  They are generalizations of design knowledge
from existing systems

•  They provide a shared vocabulary to designers
•  They provide examples of reusable designs

•  Inheritance (abstract classes)
•  Delegation (or aggregation)

5
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Categorization of Design Patterns

•  Structural Patterns
•  reduce coupling between two or more classes
•  introduce an abstract class to enable future extensions
•  encapsulate complex structures

•  Behavioral Patterns
•  allow a choice between algorithms and the assignment

of responsibilies to objects (“Who does what?”)
•  characterize complex control flows that are difficult to

follow at runtime

•  Creational Patterns
•  allow to abstract from complex instantiation processes
•  Make the system independent from the way its objects

are created, composed and represented.

6
Bernd Bruegge
Software Engineering for Engineers Summer 2009

7
Bernd Bruegge
Software Engineering for Engineers Summer 2009

A Game: Get-15
•  Start with the nine numbers 1,2,3,4, 5, 6, 7, 8

and 9.
•  You and your opponent take alternate turns, each

taking a number
•  Each number can be taken only once: If you

opponent has selected a number, you cannot also
take it.

•  The first person to have any three numbers that
total 15 wins the game.

•  Example:
You:

Opponent:

1
 5
 8
3

6
 9
 2
7
 Opponent

Wins!

8
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Characteristics of Get-15

•  Hard to play,
•  The game is especially hard, if you are not

allowed to write anything done.

•  Why?
•  All the numbers need to be scanned to see if you have

won/lost
•  It is hard to see what the opponent will take if you take

a certain number
•  The choice of the number depends on all the previous

numbers

•  Not easy to devise an simple strategy

9
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Another Game: Tic-Tac-Toe

Source: http://boulter.com/ttt/index.cgi

10
Bernd Bruegge
Software Engineering for Engineers Summer 2009

A Draw Sitation

11
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Strategy for determining a winning move

12
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Winning Situations for Tic-Tac-Toe

Winning

Patterns

13
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Tic-Tac-Toe is “Easy”
•  Why? Reduction of complexity through patterns

and symmetry
•  Patterns: Knowing the following three patterns,

the player can anticipate the opponents move

•  Symmetry:
• The player needs to remember only these
three patterns to deal with 8 different game
situations
• The player needs to memorize only 3
opening moves and their responses

14
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Get-15 and Tic-Tac-Toe are identical
problems

•  Any Get-15 solution is a solution to a tic-tac-toe
problem

•  Any tic-tac-toe solution is a solution to a Get-15
problem

•  To see the relationship between the two games, we
simply arrange the 9 digits into the following pattern

8
 1
 6

3
 5
 7

4
 9
 2

15
Bernd Bruegge
Software Engineering for Engineers Summer 2009

8
 1
 6

3
 5
 7

4
 9
 2

1
 5
 8
3

6
 9
 2
7

You:

Opponent:

8
 1
 6

3
 5
 7

4
 9
 2

16
Bernd Bruegge
Software Engineering for Engineers Summer 2009

•  During object modeling we do many
transformations and changes to the object
model

•  It is important to make sure the object model
stays simple!

•  Design patterns are used to keep system models
simple (and reusable).

17
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Modeling Heuristics

•  Modeling must address our mental limitations:
•  Our short-term memory has only limited capacity (7+-2)

•  Good Models deal with this limitation, because they
•  Do not tax the mind

•  A good model requires a small mental effort
•  Reduce complexity

•  Turn complex tasks into easy ones (choice of
representation)

•  Use of symmetries
•  Use abstractions

•  Taxonomies
•  Have organizational structure:

•  Memory limitations are overcome with an appropriate
representation (“natural model”).

18
Bernd Bruegge
Software Engineering for Engineers Summer 2009

What is common between these
definitions?

•  Definition Software System
•  A software system consists of subsystems which are

either other subsystems or collection of classes

•  Definition Software Lifecycle
•  A software lifecycle consists of a set of development

activities which are either other activities or
collection of tasks.

Recursion

19
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Recursion

•  Recursion
•  An abstraction being defined is used within its own

definition

•  More general: Description of an abstraction based

on self-similarity.

20
Bernd Bruegge
Software Engineering for Engineers Summer 2009

What is common between these
definitions?

•  Definition Software System
•  A software system consists of subsystems which are

either other subsystems or collection of classes
•  Composite: Subsystem

•  A software system consists of subsystems which
consists of subsystems, which consists of
subsystems, which...

•  Base case: Class

•  Definition Software Lifecycle
•  The software lifecycle consists of a set of development

activities which are either other activities or collection
of tasks

•  Composite: Activity
•  The software lifecycle consists of activities which

consist of activities, which consist of activities,
which....

•  Base case: Task.

21
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Modeling a Software System

Software

System

Class

Subsystem
 Children

*

22
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Modeling the Software Lifecycle

Software

Lifecycle

Task

Activity
 Children

*

23
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Introducing the Composite Pattern
•  The pattern models tree structures that represent

hierarchies of objects with arbitrary depth and width
•  The Composite Pattern lets a client treat individual

objects and compositions of these objects uniformly

Client
 Component

Leaf

Operation()

Composite

Operation()

AddComponent

RemoveComponent()

GetChild()

Children

*

24
Bernd Bruegge
Software Engineering for Engineers Summer 2009

25
Bernd Bruegge
Software Engineering for Engineers Summer 2009

The Composite Patterns models dynamic
aggregates

University
 School
 Department

Organization Chart (variable aggregate):

Dynamic tree (recursive aggregate):

Car
Fixed Structure:

Doors
 Wheels
 Battery
 Engine

Compound

Statement

Simple

Statement

Program

Block

*
 *

*
 *

*
 *

Dynamic tree (recursive aggregate):

Composite

Pattern

26
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Client
 Graphic

Square

Draw()

Picture

Draw()

Add(Graphic g)

RemoveGraphic)

GetChild(int)

Children

Line

Draw()

•  The Graphic Class represents both primitives (Line,
Square) and their containers (Picture)

Graphic Applications also Composite
Patterns

*

27
Bernd Bruegge
Software Engineering for Engineers Summer 2009

28
Bernd Bruegge
Software Engineering for Engineers Summer 2009

√

29
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Observer Pattern Motivation

•  Problem:
•  We have an object that changes its state quite

often
•  Example: A Portfolio of stocks

•  We want to provide multiple views of the current
state of the portfolio

•  Example:Histogram view, pie chart view, time
line view, alarm

•  Requirements:
•  The system should maintain consistency across

the (redundant) views, whenever the state of the
observed object changes

•  The system design should be highly extensible
•  It should be possible to add new views

without having to recompile the observed
object or the existing views.

Portfolio

Stock

*

30
Bernd Bruegge
Software Engineering for Engineers Summer 2009

Example: The File Name of a Presentation

InfoView

Powerpoint

View

List View
3 Possibilities to change the File Name

What happens
if I change

the file name of this
presentation in List View

 to foo?

Observer Pattern: Decouple Object from its Views

Subject

subscribe(subscriber)
unsubscribe(subscriber)
notify()

•  The Subject (“Publisher”) represents the entity object
•  Observers (“Subscribers”) attach to the Subject by calling subscribe()
•  Each Observer has a different view of the state of the entity object

•  The state is contained in the subclass ConcreteSubject
•  The state can be obtained and set by subclasses of type

ConcreteObserver.

update()

Observer

*
observers

ConcreteSubject

state

getState()
setState()

ConcreteObserver

observeState

update()
Application Domain

(Application Knowledge)

Solution Domain

(Design Knowledge)

