
Portneuf – A Framework for

Continuous User Involvement

Dennis Pagano





INSTITUT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Forschungs- und Lehreinheit I

Angewandte Softwaretechnik

Portneuf – A Framework for

Continuous User Involvement

Dennis Pagano

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Dr. Anne Brüggemann-Klein

Prüfer der Dissertation: 1. Univ.-Prof. Bernd Brügge, Ph.D.

2. Univ.-Prof. Dr. Kurt Schneider,
Leibniz Universität Hannover

Die Dissertation wurde am 30.01.2013 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 25.05.2013 angenommen.





To Anna with love.





Acknowledgements

This work would not have been possible without the support of many other
people. I would like to take this opportunity to thank all of you, but as a
famous researcher once wrote, “there is not enough space in this edge”. If you
do not read your name here, be sure it is memorized in my heart.

First, I would like to express my deep gratitude to Bernd Bruegge, who has
been much more to me than a supervisor. He was an infinite source of inspiration,
passion, and enthusiasm, and really never let me down. With his trust in me and
in my work, he gave me the room to become an independent and responsible
researcher, engineer, and person. Further, I want to thank Kurt Schneider,
whose research inspired me to study software users. His spirit of research was a
great example to me and his feedback always opened up new perspectives.

I am very grateful to all members of the Chair for Applied Software Engineer-
ing. I really learned a lot from all of you, and am indebted for your support
and the social environment you all have contributed to. Three of my friends
and colleagues influenced me in particular. Damir Ismailović, who has always
been there for me, day and night, and whose pragmatic way and friendship was
essential for me to follow through. Walid Maalej, who has been an extremely
professional and motivating guide throughout my research. I have benefited
very much from his experience and from our collaboration in numerous occa-
sions. Tobias Roehm, who was a great room mate and a true believer in science,
and whose well structured and positive way often helped me to find my balance.

I am further indebted to Oliver Neumann, who piqued my interest in math-
ematics and computer science, allowing me to join his mathematical journeys
and expeditions, to Wolfgang Groh, who opened my eyes and taught me how
important it is to look behind the scenes of our society and to scrutinize the
apparent, to Anne Brüggemann-Klein, who gave me the opportunity to start
my scientific career, and to Florian Rhöse, my spiritual guide and brother.

I thank my students, co-authors, and all other persons who helped me, in
particular Rana Alkadhi, Daniel Bader, Krisna Haryanto, Andreas Hegenberg,
Felix Kaser, Amel Mahmuzić, Yichen Mao, Gerhard Miller, Helmut Naughton,
Martin Ott, Patrick Renner, Christoph Teschner, and Christian Ziegler.

Finally, I want to express my love and gratitude to my family, and in particular
to my wife Anna. Writing a dissertation requires even more than the researcher’s
full attention. I am indebted for your love and devotion, your constant support
and understanding. You are the source of joy and happiness in my life.

v





Abstract

Post-deployment user feedback such as feature requests and bug reports have the
potential to improve software quality and reveal missing functionality. Neverthe-
less, in practice software companies often ignore user feedback and simply stick
with predefined roadmaps and development plans, because of two main prob-
lems. First, in order to benefit from user feedback, developers have to analyze,
consolidate, and structure it, which becomes time-consuming when feedback vol-
ume is high. Second, in order to prioritize their work, developers need to assess
how many users are affected by a particular feedback, by identifying duplicate
and similar feedback in a manual way.

This thesis describes Portneuf, a framework which tackles both problems. It
consolidates user feedback by employing a context-aware, hybrid recommender
system. Moreover, it introduces FeedbackRank, an algorithm which allows
developers to assess the importance of collected user feedback to the user com-
munity.

We demonstrate the feasibility and applicability of our approach in two real-
world applications. In a quasi-experiment with a large number of users, we
showed that Portneuf increases developers’ efficiency when working with user
feedback. The framework significantly reduces the amount of user feedback du-
plicates by over 67%, with the recommender system showing a hit-rate of over
82%. Moreover, we obtained an average precision of around 76% for Feed-

backRank, which suggests that it provides a valuable estimation of what is
important to the user community.

vii





Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Foundations 7
2.1 User Involvement Definitions . . . . . . . . . . . . . . . . . . . . 8
2.2 User Involvement Methods . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 User Role . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 User Representation . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Developer Role . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Types of User Information . . . . . . . . . . . . . . . . . 21
2.2.6 Time and Place . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 User Involvement Effects . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Empirical Analysis of User Involvement in Practice 35
3.1 Study Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Research Method . . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 Research Data . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 User Involvement Setting . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 User-Developer Communication . . . . . . . . . . . . . . 42

3.3 User Involvement Workflow . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 User Involvement Requirements . . . . . . . . . . . . . . . . . . 49
3.4.1 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



Contents

3.4.2 Consolidation . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Implications . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Grounded Theory on Continuous User Involvement 57
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Proposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Exploratory Study on User Involvement in Open Source Commu-

nities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Research Method and Data . . . . . . . . . . . . . . . . 62
4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Exploratory Study on User Feedback in Application Distribution
Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.1 Study Setting . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.3 Results Validity . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Proactive and Context-Aware Recommendation of User Feedback 91
5.1 Portneuf Model . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.1 Model of User Experience . . . . . . . . . . . . . . . . . 92
5.1.2 Model of User Feedback . . . . . . . . . . . . . . . . . . 99
5.1.3 Model of User Feedback Recommendation . . . . . . . . 103
5.1.4 Model of User Feedback Impact . . . . . . . . . . . . . . 104

5.2 Portneuf Applications . . . . . . . . . . . . . . . . . . . . . . 106
5.2.1 Early Design . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.2 System Testing . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.3 Software Evolution . . . . . . . . . . . . . . . . . . . . . 111

5.3 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . 116
5.3.1 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.2 User Experience Profiling . . . . . . . . . . . . . . . . . 119
5.3.3 User Feedback . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.4 Recommendation . . . . . . . . . . . . . . . . . . . . . . 123
5.3.5 Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

x



Contents

5.4.1 User Feedback Research . . . . . . . . . . . . . . . . . . 128
5.4.2 User Feedback Systems . . . . . . . . . . . . . . . . . . . 129

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Evaluation 133
6.1 Framework Implementation . . . . . . . . . . . . . . . . . . . . 133

6.1.1 Formative Evaluation . . . . . . . . . . . . . . . . . . . . 134
6.1.2 Summative Evaluation . . . . . . . . . . . . . . . . . . . 138

6.2 Evaluation Setting . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2.1 Evaluation Questions . . . . . . . . . . . . . . . . . . . . 141
6.2.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . 142
6.2.3 Evaluation Data . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.1 User Feedback Recommendation . . . . . . . . . . . . . . 145
6.3.2 Impact Assessment . . . . . . . . . . . . . . . . . . . . . 152
6.3.3 Issues and Improvements . . . . . . . . . . . . . . . . . . 153

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Conclusions and Future Work 159
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.1.1 Status Quo Assessment . . . . . . . . . . . . . . . . . . . 160
7.1.2 Continuous User Involvement Framework . . . . . . . . . 161
7.1.3 Implementation and Evaluation . . . . . . . . . . . . . . 163

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3.1 Open Issues in Continuous User Involvement . . . . . . . 166
7.3.2 Social Software Engineering Decisions . . . . . . . . . . . 167
7.3.3 User Experience Applications . . . . . . . . . . . . . . . 173

A Interview Questions 177
A.1 Project Information . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.2 User Feedback - Current Landscape . . . . . . . . . . . . . . . . 178
A.3 User Feedback - Current Workflow and Problems . . . . . . . . 180
A.4 User Feedback - Potentials and Challenges . . . . . . . . . . . . 181
A.5 Personal Information . . . . . . . . . . . . . . . . . . . . . . . . 183

B List of Portneuf Sensors 185

List of Figures 187

List of Tables 191

Bibliography 191

xi



Contents

xii



Chapter 1

Introduction

«[...] pay attention to what users do, not what
they say.»

— Jakob Nielsen

Software engineering aims at developing useful software systems. To this end,
software engineers often elicit needs and expectations of prospective users and
formalize them into requirements which drive further development efforts. But
once deployed, the developed system must evolve with changing end user needs
to remain useful and relevant [49]. However, evolutionary software changes and
enhancements might also affect a system’s usefulness, if they are not in line with
users’ expectations.

The goal of user involvement is to improve the usefulness of a system by ob-
taining a thorough understanding of user needs and expectations. Traditionally,
user involvement referred to the actual participation of selected, representative
users in development activities. But over the last decades, both hardware and
software systems underwent fundamental changes, and as a result also the soft-
ware users changed – from few engineers with special scientific requirements
to large amounts of “ordinary” people with various needs. Moreover, software
systems have become part of our everyday life, and the mobile and ubiquitous
devices we interact with have added an additional layer of diversity to the various
application scenarios that software developers have to deal with. As a conse-
quence, user involvement – like software development itself – must not end with
the delivery of a system, but accompany and safeguard its evolution over time.

Moreover, from a strategic point of view, it was never as important as now
for software companies to meet the expectations of their end users. On the one
hand, free and open source competitors lurk at every corner, finding more and
more supporters and gaining industrial relevance. On the other hand, end users
themselves are getting more knowledgeable regarding the tools they want to use,
and the quality they ask for. Todays’ users grow up with high-speed internet,
highly reactive, touch-based, natural user interfaces, context-aware software,
and sensor-equipped, mobile devices.

1



Chapter 1 Introduction

In addition, the internet and specifically social media have accelerated word-
of-mouth recommendations by orders of magnitude. As a consequence, frus-
trated users meet in social communities to argue against specific software and
might even harm its reputation1. The example of Final Cut Pro X – a software
for professional video editing – nicely illustrates the emerging effects:

On June 21, 2011, Apple released a new version of the software Final Cut
Pro, after having made some revolutionary changes. In particular, several core
features were removed, the user interface was modified in a way that affected
standard workflows, and the software was incompatible with previous versions so
that existing filmmaking projects could not be imported [28]. Filmmakers, who
suspected that Apple wanted to shift their focus to a more consumer oriented
market, reacted in a devastating way. They created an online petition titled
“Final Cut Pro X is Not a Professional Application” [169], asking Apple amongst
others to immediately reinstate and support the previous version. News spread
like wildfire and after one week over 600 professional filmmakers had signed the
petition [93]. Apple’s first reaction was to ban the initiator’s Apple account
and to shut down without notice the corresponding discussion threads in the
Apple support forum [178]. Was that the right thing to do? Was that Jakob
Nielsen’s intention when he said “pay attention to what users do, not what they
say” [207]?

1.1 Problem Statement

Hardware, software, users, and communication channels between users and de-
velopers have changed significantly over the last decades, leading to two major
consequences [182]. First, the importance of user involvement has increased.
Larger amounts of demanding users, software which is used in changing mo-
bile contexts, and a stronger competition, call for an increased focus on users.
Second, user involvement has to accompany software development continuously,
i.e. throughout the whole software lifecycle. As a consequence, post-deployment
user feedback such as feature requests and bug reports should become increas-
ingly important to developers [162].

In practice, however, resource constraints often do not allow companies to
employ effective user involvement methods [245]. In addition, there are a number
of communication gaps between users and developers, which affect the efficiency
of user involvement [121, 136, 181].

Specifically, when working with user feedback, developers experience the fol-
lowing two problems:

1. User feedback is intractable when its volume is high. Developers
need to consolidate, structure, analyze, and track user feedback, in order

1For instance http://ihatelotusnotes.com or http://dreckstool.de/hitlist.do

2



1.2 Contribution

to be able to react on it. However, user feedback is typically written in
natural language, might have poor quality, and could reflect contradicting
user preferences, which leads to considerable effort for user involvement,
in particular when feedback volume is high.

2. User feedback impact is latent. In order to prioritize their work,
developers need to estimate how many users experience a specific reported
error or desire a particular requested feature. To this end, they have to
manually identify and group duplicate or similar feedback which is often
scattered across several communication channels. Therefore, great efforts
are necessary to assess user feedback impact.

As a result of these problems, software development companies often ignore feed-
back and simply stick with their predefined product roadmaps and development
plans.

1.2 Contribution

Our thesis proposition is that users should be involved continuously and system-
atically during software evolution. In contrast to Nielsen, we suggest:

Pay attention to what users do, and what they say.
We make three contributions which tackle the identified problems and enhance
the body of knowledge on user involvement. First, we provide empirical evidence
on the status quo and desired state of user involvement during software evolu-
tion. Second, we develop a lightweight framework which facilitates the analysis
of user feedback and allows developers to assess its impact. Third, we show
the feasibility and efficiency of our approach by evaluating a reference imple-
mentation of the proposed framework with a real-world application and a large
number of users.

Status Quo Assessment

To assess the status quo of user involvement in research and in software evolution
practice, we explore the following two research questions:
RQ 1. Which approaches have been described in literature for involving end
users during software engineering and especially software evolution activities?
RQ 2. How and why do software companies involve end users during software
evolution in practice, and which challenges and problems arise, if a large number
of end users continuously provides feedback?

To address RQ 1, we review existing literature about user involvement in
software engineering. To answer RQ 2, we present an empirical case study
which we conducted with software professionals.

3



Chapter 1 Introduction

Continuous User Involvement Framework

We establish the theoretical foundations of our solution to the identified prob-
lems by deriving a grounded theory on continuous user involvement that relies
on user communities. To this end, we study two research questions:
RQ 3. How do software users and developers communicate in open source com-
munities and what can we learn from this communication to improve continuous
user involvement?
RQ 4. How do users provide feedback in application distribution platforms and
how can this help us to consolidate user feedback automatically?

To address RQ 3 and RQ 4 we present the results of two large exploratory
studies.

We then substantiate the acquired theoretical solution concepts into a context-
aware model for the consolidation and prioritization of user feedback. To this
end, we investigate the following research question:
RQ 5. How can the software user community be utilized to consolidate and
prioritize user feedback in a proactive way? In particular:

• How can a recommender system for user feedback identify which existing
feedback is relevant for a specific user?

• How can user feedback be rated and prioritized according to its value for
the user community?

We address RQ 5 by deriving a domain-independent model which allows for the
consolidation and prioritization of user feedback. We further show its applica-
bility to three phases of a typical software engineering lifecycle: early design,
system testing, and software evolution. Finally, we describe a reference frame-
work which instantiates the model and details our algorithms.

Implementation and Evaluation

We evaluate the proposed solution by applying a reference implementation of
the Portneuf framework to a real-world setting, posing the following research
question:
RQ 6. Is our approach feasible and does it increase developers’ efficiency when
working with user feedback? In particular:

• Can Portneuf consolidate user feedback and thus reduce the amount of
duplicates?

• Does Portneuf allow for an efficient impact assessment of user feedback?

To address RQ 6, we conduct a quasi-experiment and semi-structured interviews
with developers.

4



1.3 Scope

Previously Published Material

Parts of the contributions presented in this dissertation have been published in
[14, 99, 182, 217, 218, 219, 220, 221, 222].

1.3 Scope

User involvement in software engineering is a broad, socio-technical topic. We
therefore limit the scope of user involvement for the purpose of this dissertation
regarding the three following dimensions.

1. Software Lifecycle Phases. We believe that user involvement is rele-
vant throughout the software lifecycle. Most existing literature about user
involvement targets the early phases of a typical software lifecycle, in par-
ticular requirements elicitation. In contrast, we focus on user involvement
during software evolution. More generally, we assume that there is an exe-
cutable system, be it a prototype or software release, on which developers
can gather feedback from its users. Even though we restrict ourself to
software evolution, we show how to apply our solution to other software
lifecycle phases.

2. Software System Type. Software ranges from user-written macros over
embedded systems to large tool suites for desktops and mobile applica-
tions. In this dissertation, we are interested in interactive software sys-
tems, i.e. software where users are the primary initiators of an interaction
with the system. While we concentrate on interactive software systems, we
show how our solution could be applied to other software such as embedded
systems.

3. User Community Size. Software products have various user commu-
nities with different interests and expectations. While we do not restrict
the application domain of software, we are primarily interested in settings
with large numbers of users, where the identified problems unfold their
serious effects most demonstratively.

1.4 Contents

The remainder of this dissertation is organized as follows.
Chapter 2 introduces the foundations of user involvement, including defini-

tions and methods as well as benefits and challenges. In Chapter 3 we present an
empirical case study conducted with software professionals to analyze the current
practice of user involvement during software evolution, specifically for software
with large user audiences. Chapter 4 establishes the theoretical foundations

5



Chapter 1 Introduction

of our solution by deriving a grounded theory on continuous user involvement
which relies on user communities. For this purpose, we did two large exploratory
studies. First, we analyzed the communication between users and developers in
open source communities. Second, we investigated user feedback in application
distribution platforms. In Chapter 5 we substantiate the obtained theoretical
solution concepts into Portneuf – a context-aware and domain-independent
model for the consolidation and prioritization of user feedback. Our solution
harnesses the user community to group user feedback in a proactive way, while
increasing its overall quality. In addition, we describe a reference framework
which instantiates the model and details our algorithms. Chapter 6 reports on
the evaluation of the Portneuf framework. Finally, in Chapter 7 we conclude
the dissertation, summarizing its contributions and limitations, and illustrating
research opportunities that cover topics and questions which emerge from our
work.

6



Chapter 2

Foundations

«The notion of ’user’ cannot be precisely defined,
and therefore has no place in computer science or
software engineering.»

— Edsger W. Dijkstra, 1979

User involvement in product development is nothing new. Long before the
age of computers, users of “traditional” systems would complain about their
impracticality due to the too narrow point of view of its creators [124]. Their
dissatisfaction has even brought users to take the role of inventors, and thus led
to new products created by users [246, 281].

The area of concern of this dissertation is user involvement during software
evolution, i.e. our goal is to improve released software systems using contri-
butions by its users. In computer science, user involvement is an established
research field [165], which has been studied particularly at its intersection with
human-computer-interaction [24]. Involving users during any phase of the soft-
ware lifecycle is a socio-technical issue, leading to research problems and prac-
tical challenges. As it turns out, it is particularly difficult to choose the “right”
user involvement methodology in practice, and to assess the efficiency of user
involvement [146].

This chapter reviews user involvement literature1. In Section 2.1, we explore
different definitions of user involvement as used by the community. In Section
2.2, we review user involvement methods and summarize their properties. In
Section 2.3, we discuss user involvement experiences in research and practice
and illustrate the reported effects. Section 2.4 summarizes our conclusions.

1To find relevant publications for this literature review, we have utilized the internet search
facilities provided by the main research publishers, such as ACM [3], IEEE [141], Springer
[266], and Elsevier [94]. Subsequently, we recursively analyzed and retrieved references
from the most relevant papers.

7



Chapter 2 Foundations

2.1 User Involvement Definitions

Although user involvement is an established research field [135, 165], there is no
commonly accepted definition and the term has been used synonymously with
other terms.

Ives and Olson [146] define user involvement as “participation in the system
development process by representatives of the target user group”. Two aspects of
this definition are noteworthy. First, the notion of a “representative” anticipates
a decision whom, i.e. which users, to involve. Second, the authors refer to the
system “development” process, and thereby limit the time of involvement, in
particular they exclude the time after delivery.

Wilson et al. [288] take a quite general perspective, defining user involvement
as a “focus on users” and emphasizing the “role of users” during system design.
On closer inspection, the authors study an in-house development project where
users were involved in different ways, being interviewed and observed, as well as
evaluating prototypes and the final product.

Heinbokel et al. [135] use the term “user participation” to refer to the involve-
ment of users in design teams, which they regard as a form of “user centered-
ness” in software engineering. Heiskari and Lehtola [136] object this and claim
that user participation should instead be considered only as one form of user
involvement. The authors thereby confirm the view of Damodaran [74] that
participation denotes one specific level of user involvement.

Grudin [120] highlights gaps between users and developers and describe user
involvement as engineers’ “contact with system users”. Maalej et al. [181] support
this perspective and refer to user involvement as “gathering and understanding
user input”. The authors extend Grudin’s view introducing communication and
feedback as two dimensions of user involvement.

Rashid et al. [235, 236] add the term “user integration” to the list of syn-
onyms used in the community. As it turns out, this term is rarely also used in
more practical environments (e.g. [57]) to denote that users are made part of an
already existing or thought-out development process.

Barki and Hartwick [17, 18] claim that the term user involvement is misleading
and “should be used to refer to a subjective psychological state of the individ-
ual reflecting the importance and personal relevance that IS users attach to a
given system”, as in other research disciplines. Instead, the term “user partici-
pation” should be used “when referring to the various design-related behaviors
and activities that the target users or their representatives perform during the
system development process”. Despite the quite profound argumentation by the
authors, they did not succeed in convincing the community.

In a meta-study, Kujala [165] reviews several definitions and suggests to define
user involvement as “a general term describing direct contact with users and
covering many approaches”, due to the many different perspectives present in the
community. Although this statement has been cited in several other works, we

8



2.1 User Involvement Definitions

argue that it lacks preciseness and therefore should not be regarded a definition.
Rather, the author has given as general and abstract a description that all
existing views and definitions would still fit in.

There have been numerous, albeit tentative, attempts to define user involve-
ment over the last decades. But at the same time, hardware and software
systems, as well as software engineering have undergone fundamental changes,
leading to completely different attitudes towards users and their potential value,
and thus eventually to different notions of “user involvement”. When reviewing
this literature, the accurate researcher needs to go beyond what is written and
interpret it in the context of the time.

Until around 1975 software users were mainly engineers or programmers, so
there was no need for taking special care of involving users. In the early 1980s,
with the emergence of the personal computer, software became more interactive
and its users became ordinary people. Research started to look at users and
user satisfaction in a different light [120]. In particular the human-computer
interaction community underlined the importance of understanding users’ needs
and tasks, coining the notion of usability [55, 116, 209].

Boehm [41] introduced the spiral model, after discovering that the until then
prevalent waterfall model [249] did not provide enough flexibility for “particu-
larly interactive end-user applications”. Boehm’s spiral model for the first time
makes prototyping and iterative design first order citizens in software engineer-
ing, which allows developers to react more flexibly on changing user require-
ments.

With the recent emergence of mobile and ubiquitous computers, software and
hardware systems again undergo a fundamental change. Changing usage con-
texts prevent a precise up-front specification of how the software will be used.
Further, with the advent of application distribution platforms such as Apple’s
App Store [13] any person can become a user of any software, thus making it
difficult to assess this population beforehand. It has also recently been shown
that small businesses account for more than 75% of the top companies present in
these platforms [112]. To be applicable, user involvement will consequently have
to respect also their limited possibilities and provide cost-effective, lightweight
methods.

Conclusion 1. There is no commonly accepted definition of user involvement in
research and practice. The concept is multi-dimensional and context-dependent.
Existing research has not systematically specified and established its dimensions.
Different perspectives and practical implementations of user involvement instan-
tiate these dimensions in different ways. Finally, user involvement is subject to
change. Therefore, an enduring definition needs to be extensible.

Definition 1. User involvement denotes a systematic exchange of informa-
tion between (prospective) users and developers, with the common goal to max-

9



Chapter 2 Foundations

























 











Figure 2.1: User involvement and user involvement methods.

imize system usefulness in a specific context. Information exchange is carried
out by means of user involvement methods.

With this definition, we attempt to capture the two necessary properties of
user involvement: its goal and the flow of information from users to developers.
In this regard, we confirm the statement of Heinbokel et al. [135] that “both
functionality and usability of software depend on a transfer of knowledge from
users to software designers”. It is also worth noting that we deliberately separate
user involvement from the methods actually used to accomplish it.

Definition 2. A user involvement method provides for a systematic infor-
mation exchange between users and developers. It specifies at least the user
role, the user representation, the developer role, the involvement time, the in-
volvement place, and the procedure to be followed.

User involvement methods specify how the exchange of information between
users and developers takes place. The dimensions in our definition originate from
existing literature on user involvement. Bekker and Long [24] analyzed five user
involvement approaches and proposed an analysis framework including a total
of 19 “attributes”, which should enable designers to compare and choose between
these approaches. For our definition of user involvement methods, we selected
the attributes user role, user representation, developer role, and involvement
time, which are related to user-developer communication. Involvement time and
place as well as involvement procedure were investigated by Muller et al. [198].
Figure 2.1 illustrates the above definitions. In the following section, we review
the literature about user involvement methods and their dimensions.

10



2.2 User Involvement Methods

!"#$%&'()*%(+,-./&%(0(

1-2*3-%-4(

"4)*%2-56&7(

$'&%'(.%*6"3&(
-43(8(*%(%&9&"6&(
"4)*%2-5*4(

9*4'$:/-56&7(

$'&%'(9*22&4/(*4(-((
.%&3&;4&3('&%6"9&((
*%(%-4#&(*)()-9":"5&'(

.-%59".-56&7(

$'&%'("4<$&49&((
3&9"'"*4'(%&:-54#(/*((
/,&(=,*:&('>'/&2(

?
'&
%(
"4
<$

&4
9&
(

2
"4
"2

$2
(

2
-@
"2

$2
(

?'&%(A*:&(

Figure 2.2: User roles and their corresponding influence (adopted from [74]).

2.2 User Involvement Methods

In this section, we review existing user involvement methods. There are only
a few meta-publications (e.g. [24, 198]) which list different user involvement
methods together with their properties. Their goal is to simplify the selection
process for researchers and practitioners when looking for a method for a specific
purpose or suitable for a given situation. Rather than going through these
methods one by one, we investigate what has been published about different
attributes and dimensions of user involvement methods.

2.2.1 User Role

Bekker and Long [24] distinguish three user roles, design for, design by, and
design with, the former two of which had been already introduced by Eason
[86]. These roles represent different levels of influence by the user during system
design. According to Bekker and Long, the ’design for’ user role does not require
users to be present during design. The ’design with’ user role indicates that users
provide “indirect input to the design process”. The ’design by’ user role expects
users “to be directly involved in the design process”.

Mumford [202] also describes three roles of users, consultative, representative,
and consensus. The consultative user role allows users to influence design deci-
sions, but they are eventually made by the developers. The representative user
role involves user groups in the design team. The consensus user role aims at
a complete interweaving of users and developers. Mumford originally illustrates
that therefore all developers should be involved “in the user department contin-
uously throughout the systems design process” [202] – an advice not necessarily
always possible in current software engineering projects.

11



Chapter 2 Foundations

Table 2.1: Comparison between different user roles.

passive roles active roles decisive roles

Bekker and Long [24] design for design with design by
Mumford [202] — consultative, representative consensus
Damodaran [74] informative consultative participative

Damodaran [74] provides a general view on user roles without any restric-
tions on physical presence. The author claims that user involvement approaches
fall “somewhere on the continuum” from informative, through consultative, to
participative [74, 136]. Figure 2.2 illustrates these roles and the corresponding
influence of users on the system. The informative user role only indicates an
information exchange between users and developers. The consultative user role
means that users are provided either with prototypes which they should com-
ment on or with possible design choices from which they should select one. Users
filling a participative role may directly influence decisions regarding the system.

To summarize, there are multiple, overlapping user role descriptions in litera-
ture. The fact that they all propose three distinct roles is insignificant and does
not mean that the roles match. On the contrary, the definitions are expressed
using different attributes of the relationship between users and developers. For
instance, Bekker and Long [24] refer to the degree of influence, while Damodaran
[74] actually specifies the activity carried out by a user filling a role. We agree
with the view of Damodaran [74] that user roles can be arranged on a contin-
uum representing increasing influence on design decisions. Table 2.1 compares
between the three reviewed models of user roles regarding the type of activity
assigned users may perform.

However, there are also user roles which give rise to a suboptimal user-
developer communication. Damodaran [74], who provides guidelines for user
involvement, points out these common pitfalls. According to the author, users
may find themselves in two equally negative roles, the “hostage” role or the “pro-
pagandist” role [74], which were originally described by Hedberg [134]. In the
hostage role, involvement is blocked by the developers. Consequently, users act
in a way that promotes “social comfort” but “limits real communication”, so that
eventually no problems are solved [74]. According to Damodaran, the hostage
phenomenon might be caused by inadequate and inappropriate training, what
might confuse the users’ feelings and lead to a misconception of their role in
the project. Moreover, they may perceive software engineering as mysterious,
what even reinforces their bias. Damodaran concludes that the hostage role
is “particularly damaging because it fails to deliver any of the benefits of user
involvement while sustaining the delusion that users are represented in the de-
sign team” [74]. The propagandist role was originally labeled “indoctrination
alternative” by Hedberg [134]. The role denotes the exposure of users to train-

12



2.2 User Involvement Methods

ings in system design methods, in order to avoid any potential disruptions to
design. As it turns out, such training typically changes the perspective of the
involved users, and frequently they “begin to adopt the designers’ view of the
design process” [74]. Damodaran explains that indoctrinated users tend to per-
ceive user problems from a developer perspective and therefore fail to safeguard
users’ needs.

Interestingly, as Heiskari and Lehtola [136] point out, most user roles do not
actually give decisive power to the users. According to Damodaran this is not
sufficient, since users need to be able “to influence design, not merely ’rubber
stamp’ it” [74]. To determine the right degree of user involvement is one of the
most discussed issues among user involvement literature. Grudin pinpoints this
as follows:

“What is the optimal degree of user participation in development? If
you are developing a compiler, users’ involvement will be minimal.
If you are copying features from an existing product in a mature ap-
plication area, limited contact with potential users can be adequate.
If you are developing an interactive system in a new domain, full
collaboration with users can be essential.” [121]

The optimal degree of user involvement thus needs to be decided from case to
case. The question remains, however, which range the degree of user involvement
may take. Ives and Olson [146] distinguish the following six degrees of user
involvement according to the users’ influence on the product.

1. No involvement. Users are not involved, either because they are not willing
or not invited to contribute.

2. Symbolic involvement. Users’ input is requested, but in fact ignored. While
this seems hypocritical, the reason for discarding the gathered information
may be manifold. For instance, its quality may be insufficient or the goals
not reachable within available budget and time.

3. Involvement by advice. Users’ advice is requested on a per-issue basis
through interviews or questionnaires.

4. Involvement by weak control. Users may sign-off at every stage during the
development process.

5. Involvement by doing. Users are members of the design team or the official
liaison to the development team.

6. Involvement by strong control. Users may pay themselves for the devel-
opment effort, or “the user’s overall organizational performance evaluation
depends on the outcome of the development effort.”

13



Chapter 2 Foundations












































Figure 2.3: Descriptive user involvement model according to Ives and Olson
(adopted from [146]).

To summarize, at one extreme developers make assumptions about user require-
ments while actually ignoring the users themselves, whereas at the other extreme
users become designers or collaborators to decide about system acceptance based
on self-defined quality criteria.

Ives and Olson further describe which parts of the system users may actually
influence. Figure 2.3 illustrates the authors’ descriptive model of user involve-
ment, which names system quality and system acceptance as the main “outcome
variables” of user involvement [146]. Moreover, the model includes two “in-
tervening mechanisms” between user involvement and its outcome. Cognitive
factors denote the increased understanding of the system, improved assessment
of system needs, and an improved evaluation of the system features. Motiva-
tional factors on the other hand, denote an increase in the perceived system
ownership by the involved users, decreasing resistance to change, and increasing
commitment to the new system. While these motivational factors may sound
exclusively positive, we argue that these factors might actually push users into
the propagandist role.

Conclusion 2. User involvement can stand for various degrees of decisive power
for the involved users, leading to a continuum from passive to decisive user roles.
How much influence is optimal depends on many factors, which is why there is
no common agreement in literature. Therefore, researchers have published com-
parative studies in order to help practitioners to select suitable user involvement
methods. In any case, users should be handled with care, since they might easily
get blocked as outsiders or change their perspectives when exposed to trainings.

14



2.2 User Involvement Methods!"#$%&#'$#"#()*+,(%

(,%-"#$"% "-."#)%,/%*00%-"#$"% *00%-"#$"%

&#
'$
#"
#(

)*
+1
#(

#"
"%

2
3(
32

-2
%

2
*4
32

-2
%

5(1,01#6%!"#$"%

7%

Figure 2.4: Different user representations. The representativeness of a user sub-
set might be unknown.

2.2.2 User Representation

User representation refers to the question who, i.e. which users, should be in-
volved in the software development process. We need to distinguish two situ-
ations. If an existing system is to be improved, i.e. during software evolution,
actual users are available, while in the case of greenfield engineering projects [49],
only prospective users may be involved. In either case it is crucial to involve the
“right” users.

Damodaran claims that “most serious limitations with user involvement arise
from shortcomings of the representative structures put in place” [74]. The author
regards the selection of representative users as crucial and suggests to aim at as
genuine a representation of the user population as possible.

Over the last decades users have been viewed from several perspectives, de-
pending on what software was predominantly used for and on the increasing
prevalence of software systems. Kanstrup and Christiansen report on a gradual
increase in user significance from “victims” in the 1970s, to “competent practi-
tioners” in the 1980s, to “serious professionals” in the 1990s, and to a valuable
“source of inspiration” in the 21st century [156]. Similar changes can be observed
regarding the question whom to involve during software development. While it
has been easy to identify system users in the 1970s, it is regarded as key challenge
for both user involvement and requirements engineering today [25, 212, 263].

Theoretically, user representation ranges from no users to all users as illus-
trated in Figure 2.4. Practically, however, there are limitations. While back
in the 1970s it was feasible to involve all prospective users of a future system
in its development, this changed with the beginning of the following decade.
Already in 1983, Gould and Lewis recommend to involve “typical users” during
the design process in their seminal work on user-centered design [115]. Research
accepted the practical limitations of user representation (e.g. [166]) and subse-
quent research – if any – rather concentrated on how to find the “right” set of
users. However, the little research that was carried out in this regard belongs

15



Chapter 2 Foundations

to product development, innovation, and marketing, and is typically concerned
with customer integration in new product development (e.g. [96]) rather than
with user involvement in system development [166].

Identifying the right user representation is a non-trivial task, which is par-
ticularly difficult for a large amount of heterogeneous users [166]. Grudin [121]
reports on the following four challenges in identifying appropriate users. First,
actual users of a product are often unknown until they buy it. Partially, this
holds even true for new releases of existing software which often aim at expand-
ing market share. A second challenge arises if product development aims at as
broad a target group as possible. Third, the size of a development company
complicates the identification of the right set of users. Due to the following
subdivision of work, single software engineers seldomly see the big picture. Geo-
graphical distribution in global software engineering projects increases this chal-
lenge. Further, the gap between users and developers is typically larger in big
companies. As fourth challenge the author mentions that products are often
modified after being released but before arriving at the user. For instance value-
added resellers may tailor products for a specific market. Again, this enlarges
the gap between developers and the actual users of a system.

The lack of common guidelines towards a systematic selection of user repre-
sentatives has brought researchers to put the cart before the horse. Muller et
al. [198] compare 60 distinct user involvement methods (called “participatory
practices” by the authors) regarding various attributes, among them also “group
sizes” which refers to the number of users that are suitable for the correspond-
ing method. The authors leave the choice of the right method – and thus of
the right user representation – to the engineering team. Bekker and Long [24]
compare five of these methods. The corresponding user representations range
from a “representative set” to “all prospective users”.

More than two decades after Gould and Lewis had introduced user-centered
design, Kujala and Kauppinnen [166] propose a process for identifying and se-
lecting relevant users, in particular for field studies and to gather user needs.
The process is iterative and consists of the following five steps:

1. Brainstorm a preliminary list of users.

2. Describe the main user characteristics (including market size).

3. Describe main user groups and prioritize them.

4. Select typical and representative users from the groups.

5. Gather information from the users and redesign the user group descriptions
according to the new information gathered.

The fourth step consists of selecting a subset of users. The authors explain
that whenever a group of users has to be selected, it is important to employ a

16



2.2 User Involvement Methods

sampling strategy that produces a representative sample. If it is possible to list
all users, a random sample can be drawn, given that the chance for subgroups
to be included is known, and the sample size is large enough [166]. However,
also random sampling does not always simply work by its own. For instance,
when selecting users for field studies or usability tests, stratified sampling is
appropriate, since the population needs to be divided into mutually exclusive
groups corresponding to the main user characteristics [87, 166].

Bergvall-Kåreborn and Ståhlbröst [25] report on the following characterization
of users originating from a joint perspective between product development and
information system development.

• Lead users are vanguard users with needs that will become common in the
future, who are motivated to contribute in order to get these needs met
[281].

• End users do or will actually use the system.

• User-representatives, which might be single persons or groups, represent
end users in the development team and act on their behalf.

• Early adopters (also called first buyers) use new technologies faster than
typical users.

The authors remark that both lead users and early adopters might not be repre-
sentative of the “general market segment for a system, but rather the opposite”
[166]. The difference between lead users and early adopters lies in their motiva-
tion. The main motivation for early adopters is the early use of a system, while
lead users want to contribute to its development.

Meanwhile, requirements engineering research had to solve the same prob-
lem. To elicit the requirements of a system, developers need to interact and
collaborate with prospective users, which typically have a completely different
background [49]. But because their input and feedback are needed to elicit re-
quirements, the emerging gaps between users and developers have to be filled.
Several techniques were proposed and evaluated in response to this situation
and are in broad use today.

Using scenario-based requirements elicitation [49, 56] developers elicit require-
ments by observing and interviewing users. During the first step of this tech-
nique, developers identify actors – different types of users the system under
development will support. Next, developers observe prospective users during
their current tasks and create a set of scenarios for the functionality of the fu-
ture system. Scenarios represent concrete examples of how the system under
development will be used and provide means for developers to communicate
with users. Cooper [69] proposes personas – user archetypes which should con-
cretize the too abstract notion of ’user’ and thereby improve product design

17



Chapter 2 Foundations

practices. Personas consist of a precise description of hypothetical users, includ-
ing their goals, and represent a user group during the complete design process
[166]. However, persona development processes typically put more emphasis on
detailing descriptions of typical users than on accuracy while identifying repre-
sentative users [265]. Agile software development methodologies such as extreme
programming [21] identify and represent users with user roles and user stories.

Conclusion 3. In theory, user representation might range from none to all
users. In contrast, it is commonly believed that it is impossible to involve all
users in software development. Consequently most user involvement methods
comprise the selection of a group of “representative” users. To select this group
is seen as the key challenge, also because the real users might not even be known
beforehand. The effects of a selection failure are typically severe limitations.

2.2.3 Developer Role

The goal of user involvement is to improve the usefulness of a system by un-
derstanding the needs and expectations of users. As a consequence, developers
need to gather information from users. The term developer role refers to what
developers accomplish to elicit this information. Typically, it refers to a specific
kind of interaction with the involved users.

In general, a developer’s role in user involvement methods is to support the
acquisition of knowledge regarding user’s tasks, needs, and expectations. In this
regard, the developer’s goal is that of an empirical researcher, who wants to get
insights about a specific phenomenon within a given population2. Depending
on which method the researcher uses, there are generally two forms of contact
with the studied subjects. First, the researcher might observe subjects without
a direct interaction, or only analyze existing data. The second form includes
a direct contact with the subjects. Consequently, we argue that the developer
role in user involvement methods will be either direct or indirect, depending on
whether the developer directly interacts with users or not. Bekker and Long
[24] compare five design approaches and found three developer roles: the expert,
who represents users’ interests, the facilitator, who organizes meetings, plans
agendas, and facilitates participants’ contributions, and the emancipator, who
tries to increase the possibilities for a weak group to have influence [31].

Only few researchers investigated the actual percentage of developers con-
cerned with user involvement. In a survey about user-centered design practices,
Vredenburg et al. [284] found that around 27% of the project staff were involved
in user-centered design activities. Grudin claims that for “user involvement to be
effective, most or all members of the development team must be committed to

2Note that empirical measurement is one of the principles of user-centered design [115].
Moreover, empirical research in software engineering for instance employs focus groups
[164] which are also a popular user involvement method [284].

18



2.2 User Involvement Methods

the approach” [121], mainly because iterative development requires longitudinal
involvement and since usually some software needs to be touched in order to
build and test prototypes.

The developers in question then need to establish a connection to the (previ-
ously selected) users. According to Grudin [121], several potential obstacles dur-
ing this initial phase might lead to profound gaps between developers and users.
Traditionally, product development companies would protect their developers
from real users or customers. The reason lies in the fact that an organization
usually cannot afford to loose precious development time of highly qualified per-
sonnel for customization requests of single users. As a consequence, developers
get isolated from such requests and are faced with an often already prioritized
list of generic improvements to benefit scores or large amounts of users. Repre-
sentatives might be reluctant to let developers meet the real customers or users.
They fear that developers, who are often seen as coming from a different “cul-
ture”, might talk about development internals, thus creating dissatisfaction with
current products, or even offend or alarm users or customers.

Furthermore, Grudin explains that developers often do not follow through
even though they typically agree to the importance of user involvement in prin-
ciple. The main reason lies in a number of gaps between users and develop-
ers, which can be of technical, social, and socio-technical nature. For instance,
according to Grudin developers sometimes lack sympathy or empathy for inex-
perienced or nontechnical users. Users and developers often differ in terms of
age, opinions, or academic background, and typically speak “different languages”
regarding the product. In practice, developers often lack the experience to com-
pensate for these differences, a soft skill which is hard to teach. According to
Grudin, the “best of intentions can succumb to these factors, especially in the
face of the slowness and imprecision that often accompany user involvement”
[121].

Conclusion 4. Developers’ roles in user involvement range from indirect obser-
vation to direct interaction. Research indicates that user involvement is most
beneficial if it is regarded as common organizational culture by all developers.
But as it turns out the relationship between users and developers is characterized
by several gaps which eventually detach the organization from its users. Being a
process of complex, socio-technical nature, user involvement thus bears several
challenges for a effective information exchange between users and developers.

2.2.4 Procedure

A procedure specifies how knowledge about users’ needs is practically acquired
with a specific user involvement method. Bekker and Long [24] use the notion of
“user involvement process” to indicate the actual steps to be followed. Similarly,
Muller et al. [198] refer to a “process model”. However, we argue that the notion

19



Chapter 2 Foundations

of process has a longitudinal character, while procedure fits more our conceptual
model of a user involvement method. Nevertheless, user involvement methods
can be used repeatedly and in combination with other methods, thus aligning
the single procedures to a user involvement process.

The procedure represents the main differentiator of user involvement methods.
It answers questions such as how the involvement should be implemented, what
participants do to communicate with one another, how they make decisions, and
what they do with the materials used [24, 198].

As it turns out, it is not commonly agreed that a method oriented approach is
suitable for user involvement [24], since single practitioners explicitly object to it
(e.g. [34] and [37]). According to Muller et al. [198], there are two main reasons
for this belief. First, the assumption that “a method is a straightforward, usually
linear or sequential, series of well-understood steps that will lead to a predictable
and relatively guaranteed outcome” [198]. Second, being able to name a method
may incite engineers to believe that they have applied it in the right way, while
the opposite may be the case.

We argue that methods should always be seen as a tool. The experienced
practitioner knows how to apply a specific tool. In particular, she is aware
that user involvement – as software engineering in general – is a complex, socio-
technical, communication- and collaboration-intensive process where methods
can never be simply applied with guaranteed success.

Grudin [121] explicitly reports on challenges related to the communication
aspect of user involvement methods. First, the collected feedback does not al-
ways reach the developer. Developers may be shielded from external contacts by
customer support groups who maintain products while working with customers
on particular problems. Second, there might be no or not enough feedback.

“The extent of feedback may vary with the pattern of marketing and
product use. A company such as Apple, with a heavy proportion
of discretionary purchases initiated by users rather than by manage-
ment or information systems specialists, accrues benefits from having
a particularly vocal user population. In general, though, a lack of
user feedback may be the greatest hindrance to good product inter-
face design and is among the least recognized defects of standard
software development processes.” [121]

Grudin explains that developers often lack experience with user feedback, which
represents an obstacle to product improvement. Moreover, they often need to
decide between alternatives based on metrics other than user feedback, typically
time to develop and performance3.

Similarly, Maalej et al. [181] elaborate on various communication gaps be-
tween users and developers for different user involvement procedures. The au-

3These decisions are called “design goals” in software engineering [49].

20



2.2 User Involvement Methods

thors align the issues in “communication activities” according to the type of
feedback (implicit or explicit) and the type of communication (push or pull).
First, when feedback is explicitly gathered, communication is often inefficient
and gathered information misinterpreted, since users often cannot articulate or
do not remember their needs, simply do not know them, or forget important
context information. Required efforts and resources to overcome these gaps are
typically high, while human factors like subjectivity, interpretation, or social dis-
tinctions might absorb their effects. Second, feedback explicitly and proactively
provided by users, frequently lacks important details and context information
(cf. [298]). The underlying communication is often inefficient due to multiple
iterations of requests and responses and requires users’ motivation to yield con-
tributions of a sufficiently high quality. Third, if developers implicitly elicit user
needs by analyzing legacy documents or by gathering usage data for product
increments, they typically do not have any “back channels” to reach the users
for clarifications and find themselves faced with a relatively large amount of
noise and irrelevant information. Finally, lead-users might also actively deliver
implicit information by thinking further than a user only interested in “consum-
ing” features. According to Maalej et al. the particularly high chances in the
software domain that such users might become competitors, might be a reason
why the lead-user method is a rather uncommon user involvement method.

Conclusion 5. How user involvement is actually implemented is specified by
procedures, which typically provide step-by-step instructions and explain how
users and developers should communicate, on which basis decisions should be
made, and which materials are necessary. Critics of a method-oriented approach
underline the social component of user involvement, arguing that developers need
experience and flexibility more than step-by-step descriptions, and that success
is by no means guaranteed. Communication is seen as the most vulnerable part
of any user involvement procedure, given various potential gaps between users
and developers, in particular missing context information.

2.2.5 Types of User Information

Heiskari and Lehtola define user information as “anything that describes the
users, their needs, problems they encounter, or the context they operate in”
[136]. Interviewing six professional developers, the authors found seven different
types of user information. Table 2.2 summarizes these types of user information
together with their respective frequency. The study revealed that user feedback
from already deployed products together with feedback from beta testers are
the most common types of information. The generalizability of the quantitative
results might be questionable. However, in particular for the purpose of this
dissertation, it makes sense to further classify user information.

21



Chapter 2 Foundations

Table 2.2: Types of user information discovered by Heiskari and Lehtola
(adopted from [136]).

User information Count
End user feedback 6
Beta feedback 5
Feature requests 1
Vision document 1
Usability problems 1
Conceptual requirements 1
Wholesaler profiles 1

If directly mentioned at all, user involvement literature typically names “user
needs”, “user tasks”, or “user problems” when referring to information gathered
while working with users in a greenfield-engineering project (e.g. [116, 166]),
and “user feedback” when referring to information gathered on existing systems
or system prototypes (e.g. [24, 167]). We think the reason for these few de-
scribed types is that user involvement literature typically falls into one of the
four following categories.

1. Problem statement. Claims positive or negative effects of user involvement,
argues about its definition or about missing empirical measures for its
effectiveness (e.g. [146]).

2. Study. Analyzes effects of applied user involvement methods, such as its
effectiveness, costs, or benefits (e.g. [167]).

3. Meta-study. Summarizes or compares different user involvement methods
or studies (e.g.[24]).

4. Solution proposal. Describes a specific user involvement method (e.g. [116]).

Most publications belong to the first two categories, least to the third and fourth.
On the contrary, specific instances of user information types are mostly intro-
duced in solution proposals. For the purpose of this dissertation, we do not aim
at a complete description of different user information types. We rather want
to align the most common types in a preferably simple taxonomy, in order to
provide a foundational glossary.

The main types of user information identified by Heiskari and Lehtola are
different kinds of user feedback (end user feedback, beta feedback, and problem
reports), feature requests, and design documents. According to Grudin [121],
user feedback may be collected from “bug reports” and “change requests”, notions
which are also common in software maintenance and configuration management.

The software maintenance standard ISO/IEC 14767:2006(E) defines two in-
formation entities which may be provided by users. First, modification requests

22



2.2 User Involvement Methods

“identify proposed modifications to a software product that is being maintained”
[144]. Modification requests, which are also referred to as change requests, are
the primary input for software maintenance activities and may later be catego-
rized into corrections or enhancements. Second, problem reports “identify and
describe problems detected in a software product” [144]. A modification request
may be created in response to a reported problem, but on the contrary also a
problem report may be created while analyzing a modification request.

Similarly, configuration management [142] is concerned with management and
controlling of change during software systems evolution [49]. To enable develop-
ers to deal with change, configuration management relies on a formal process to
capture, analyze, and work on change requests (also called requests for change).
Change requests are formal reports created by users or developers and denote
the request to modify a work product [49].

Issue trackers are commonly used in software projects to report and follow
problems with a software system or to request potential enhancements [12]. In
the case of open source software the issue tracker is typically public, so that
all users may create reports. Issue trackers store reported issues in tickets,
which can be classified into different types, according to the reported issue. As
a consequence, these types correspond to types of user information. We did
not find any scientific publication on the different ticket types used in typical
software projects. However, common issue trackers such as Jira4 or Trac5 are
shipped with a predefined set of types, typically including defect, enhancement,
issue, and new feature.

We argue that the main differentiator for user information types lies in the
availability of the developed system. If this system is not yet developed, gathered
user information is prospective regarding the system. Consequently, prospective
user information typically describes current user tasks or user requirements. In
contrast, user information is retrospective, if it is gathered from users who actu-
ally used the already existing system. Retrospective user information therefore
usually takes the form of feedback. Table 2.3 distinguishes the different types
of user information described in literature according to these categories.

In Figure 2.5, we illustrate user information types which are relevant for the
purpose of this dissertation and how they are related to each other. Require-
ments typically represent prospective user information, while feature requests
may represent prospective and retrospective user information. Feedback on ex-
isting features as well as error reports are necessarily retrospective. Note that
the information type does neither determine how the information is obtained nor
in which form. The focus of this dissertation is user involvement during software
evolution, which is why we primarily focus on retrospective user information.

4http://www.atlassian.com/software/jira
5http://trac.edgewall.org/

23



Chapter 2 Foundations

Table 2.3: Different types of user information.

Reference Prospective Retrospective

Heiskari and Lehtola [136]
conceptual requirement,
feature request, vision
document

beta feedback, end user
feedback, feature request,
usability problem

Grudin [121]
user need, user work, user
task

bug report, change request,
user experience

ISO/IEC standard for
software maintenance [144]

—
change request, problem
report

IEEE standard for
configuration management
[142]

— change request

Ticket types in issue trackers
[90, 149]

new feature
defect (bug), enhancement
(improvement), issue
(problem), new feature

Requirements engineering
artifacts [49]

scenario, use case feedback on prototypes

























Figure 2.5: Taxonomy of user information types.

24



2.2 User Involvement Methods

Conclusion 6. User information gathered through user involvement methods
can be prospective or retrospective, depending on the availability of the system
under development. Important user information types include requirements,
feature requests, feedback on existing features, and error reports.

2.2.6 Time and Place

User information could be gathered throughout the whole software lifecycle,
ranging from prospective information in the early stages of the project, to feed-
back on prototypes, and to continuously gathered retrospective information dur-
ing software evolution. As already discussed, prospective user information is
typically gathered in the beginning of a project, while retrospective user infor-
mation usually during later phases. For instance, Bekker and Long [24] distin-
guish between early involvement, late involvement, and involvement throughout
the lifecycle.

Similarly, the place where users are involved varies. Depending on the method
utilized, but also on the phase of the software lifecycle, it may range from the
user environment to the development environment. In practice, retrospective
user information can be obtained with a specific external tool or service, but
also directly while actually using the software. The latter case is commonly
called “in situ” feedback and should be preferred according to several authors
(e.g. [107, 182, 262]), since it avoids that users have to leave the application and
interrupt their workflows in order to contribute.

Muller et al. [198] provide a comprehensive overview of different user involve-
ment methods, and organize them according to both the time during the software
lifecycle where they may be useful and the place where they are likely to be used.
Table 2.4 summarizes user involvement methods suitable for a specific software
lifecycle phase, while Table 2.5 depicts those applicable in multiple software
lifecycle phases. Of the 60 methods6 compared by Muller et al. [198], 35 are
useful in early lifecycle phases (up to, including, object design), while 21 meth-
ods are suitable in later lifecycle phases (i.e. from evaluation onward). Of these
methods, 14 are useful in both early and late lifecycle phases. The remaining
18 user involvement methods span multiple phases of the software lifecycle. As
illustrated in Table 2.5, 10 of these multi-phase methods apply to early lifecycle
phases, while the remaining 8 suit the later lifecycle phases. Similarly, Bekker
and Long [24] compared 5 user involvement methods. The authors found that 3
methods are used in early phases while one of them is also used in later stages.
The remaining 2 methods are used throughout the development process.

Kujala [165] claims that user involvement is most beneficial in the early stages
of system development, as later the costs to make changes increase. We do not

6Note that Muller et al. originally list 61 participatory practices. However, organization game

and layout, organization, and specification games refer to the same method.

25



Chapter 2 Foundations
Table

2.4:U
ser

involvem
ent

m
ethods

organized
by

tim
e

and
place

(adopted
from

[198]).
P
rospective

R
etrospective

P
roblem
identification

&
clarification

R
equirem

ents
engineering

System
design

O
bject

design
Evaluation

End
user

cus-
tom

ization
R
e-design

U
ser

environ-
m

ent
Forum

T
heatre

[159]
Ethnography

[33]
M

ock-U
ps

[91]
Search

C
onference

[224]
Starting

C
onference

[224]

A
rtifact

W
alkthrough

[290]
B

lueprint
M

apping
[161]

C
A

R
D

[200]
Ethnography

[33]
Forum

T
heatre

[158]
M

ock-U
ps

[91]
P
IC

T
IV

E
[197]

P
ictureC

A
R
D

[274]

A
rtifact
W

alkthrough
[290]

Lunchbox
[254]

A
rtifact
W

alkthrough
[290]

Forum
T

heatre
[159]

Interface
T

heatre
[201]

B
uttons

[186]

Interm
ediate

environ-
m

ent

Future
W

orkshop
[158]

G
raphical
Facilitation

[71]
Layout,

O
rganization,

&
Specification
G

am
es

[92]
Scenarios

[56]
Storytelling

W
orkshop

[117]
Translators

[287]

C
ISP

[187]
C
ollab.

D
esign

W
orkshop

[36]
C
oop.

R
eqm

ts.
C
apture

[184]
C
U

TA
[168]

Future
W

orkshop
[158]

G
raphicalFacilitation

[71]
Layout,

O
rganization,

&
Specification

G
am

es
[92]

P
articipatory

Ergonom
ics

[211]
Scenarios

[56]
Translators

[287]
W

ork
M

apping
[276]

A
C
E

[85]
C
A

R
D

[200]
G

raphical
Facilitation

[71]
M

etaphors
G
am

e
[201]

M
ock-U

ps
[91]

Scenarios
[56]

Translators
[287]

C
ISP

[187]
C
ollaborative
D

esign
W

orkshops
[36]

C
ritics

[188]
G

raphical
Facilitation
[71]

Icon
D

esign
G

am
e

[201]
Scenarios

[56]

C
ISP

[187]
C
ollab.

D
esign

W
orkshop

[36]
C
ooperative

Evaluation
[292]

M
ock-U

ps
[91]

P
articipatory

Ergonom
ics

[211]
P
articipatory

H
euristic

Evaluation
[199]

P
luralistic

W
alkthrough

[26]
Scenarios

[56]
Storyboard

P
rototyping

[11]
Translators

[287]
W

ork
M

apping
[276]

C
ritics

[188]
C
ritics

[188]
P
riority
W

orkshops
[45]

D
evelopm

ent
environ-
m

ent

W
orkshop

for
O

-O
G

U
I
D

esigning
[194]

K
O

M
PA

SS
[119]

P
rototyping

[51]
T

O
D

[194]
W

orkshop
for

O
-O

G
U

I
D

esigning
[194]

H
O

O
T

D
[42]

K
O

M
PA

SS
[119]

P
rO

TA
[198]X

P
rototyping

[51]
T

O
D

[194]
W

orkshop
for

O
-O

G
U

I
D

esigning
[194]

B
rainD

raw
[84]

H
O

O
T

D
[42]X

P
IC

T
IV

E
[197]

P
rO

TA
[198]

P
rototyping

[51]
V

ideo
P
rototyping

[294]

C
A

R
D

[200]
P
IC

T
IV

E
[197]

P
rototyping

[51]
T

O
D

[194]
W

orkshop
for

O
-O

G
U

I
D

esigning
[194]

26



2.2 User Involvement Methods
Ta

bl
e

2.
5:

U
se

r
in

vo
lv

em
en

t
m

et
ho

ds
sp

an
ni

ng
m

ul
tip

le
lif

ec
yc

le
ph

as
es

(a
cc

or
di

ng
to

[1
98

]).
P
ro

sp
ec

tiv
e

R
et

ro
sp

ec
tiv

e

P
ro

bl
em

id
en

tifi
ca

tio
n

&
cl

ar
ifi

ca
tio

n

R
eq

ui
re

m
en

ts
en

gi
ne

er
in

g
Sy

st
em

de
si
gn

O
bj

ec
t

de
si
gn

Ev
al

ua
tio

n
En

d
us

er
cu

st
om

iz
at

io
n

R
e-

de
si
gn

A
C
O

ST
[7

6]

C
ES

D
[1

18
]

C
od

ev
el

op
m

en
t

[1
0]

C
on

ce
pt

ua
lT

oo
lk

it
in

C
SC

W
D

es
ig

n
[3

7]

C
on

te
xt

ua
lD

es
ig

n

[2
89

]

C
on

te
xt

ua
lI

nq
ui

ry

[1
38

]

D
ia

rie
s

[4
4]

ET
H

IC
S

[2
03

]

FI
R
E

[4
6]

Fl
or

en
ce

[3
0]

G
ro

up
El

ic
ita

tio
n

M
et

ho
d

[4
3]

H
is
er

D
es

ig
n

M
et

ho
d

[3
5]

JA
D

[2
91

]

O
R
D

IT
[1

25
]

SS
A

D
M

[1
77

]

SS
M

[6
3]

ST
EP

S
[1

01
]

U
T

O
P
IA

[3
8]

27



Chapter 2 Foundations

fully agree with this claim, as it seems to assume a simple sequential develop-
ment process such as the waterfall model [249]. Although it is true that change
typically produces higher costs the later it occurs [49], this should not be an
excuse to develop an unusable or useless system. More recent development pro-
cesses, such as the spiral model [41] or agile processes like Scrum [261] embrace
change and provide facilities to iteratively obtain feedback and react to it. More-
over, when developing mobile applications, not all possible contexts of use can
be checked or simulated before shipping the application. Consequently, user in-
volvement will become even more important in the later stages of the software
lifecycle for such applications.

Conclusion 7. User involvement methods have been proposed for early and
late phases of software development processes. Depending on the state of the
system under development, developers gather either prospective or retrospec-
tive user information. Research mainly investigates the benefits and challenges
of early user involvement, since it is commonly accepted that changes become
more expensive over time. While we agree with this fact, we claim that the
yet undiscovered field of user involvement during software evolution bears huge
potential. In-situ feedback should be preferred.

2.3 User Involvement Effects

Theoretically, involving users in the development of software should lead to in-
creased probability of software success and higher user satisfaction [165]. Practi-
cally, various different, partly contradictory, results have been reported (e.g. [135]
and [167], see also [146]). Experiences with user involvement have been described
in industrial studies, which illustrate effects of applied user involvement and
meta-studies, which summarize and compare existing results from user involve-
ment research and practice. We summarize these experiences by pinpointing the
reported benefits and challenges.

2.3.1 Benefits

Kujala [165] conducted a meta-study to understand early user involvement and
its effects in practice. The author described various benefits, particularly on
system success and user satisfaction. Specifically, developers experienced to get
“more accurate user requirements”, avoiding “costly” features which were not
wanted or needed by users. User involvement led to higher probabilities of sys-
tem acceptance and increased user satisfaction. In a survey with over 200 prod-
uct managers, already Baroudi et al. [19] had found that user satisfaction in the
consequence also led to greater system usage. Later, Kujala et al. [167] empir-
ically investigated the role of user involvement in typical development projects
with respect to the definition of user requirements. Surveying 18 practitioners

28



2.3 User Involvement Effects

from 13 Finnish companies, the authors could confirm that user involvement led
to better requirements quality. Further, projects where developers had based
requirements on user information had a significantly higher probability of suc-
cess.

Vredenburg et al. [284] surveyed over a hundred user-centered design profes-
sionals to investigate how user-centered design methods were used in practice
across the industry. A majority of around 80% of the participants agreed that
user-centered design methods have improved usefulness and usability of their
products. The study also indicated that not only benefits are taken into consid-
eration by developers. Rather the relation between costs and benefits determine
if methods are applied and if they are considered helpful. Consequently, the most
commonly used methods should be effective and cheap. The five most impor-
tant user-centered design methods found by Vredenburg et al. are, in descending
order, field studies, user requirements analysis, iterative design, usability eval-
uation, and task analysis. On the other hand, the five most used methods are
iterative design, usability evaluation, task analysis, informal expert review, and
field studies. The fact that these lists are not equal reveals there is still po-
tential for more cost-effective methods. Furthermore, the authors asked survey
participants to name measures of effectiveness for user-centered design meth-
ods. Among the most frequent results were external satisfaction, enhanced ease
of use, impact on sales, and reduced helpdesk calls. Accordingly, successfully
applying user-centered design should lead to better usability, increased sales
numbers, and less maintenance efforts.

Conclusion 8. Several studies have shown that user involvement can have pos-
itive effects on system success and user satisfaction. Specifically, increased user
requirements quality as well as improved usability and usefulness have been
reported, leading to increased sales numbers and less maintenance efforts. How-
ever, in practice both cost and benefit of user involvement determine its appli-
cability. Research has shown that there is still potential for more cost-effective
user involvement methods.

2.3.2 Challenges

Rosenbaum et al. [245] surveyed over 130 HCI professionals to understand how
organizational approaches and usability methodologies contribute to the strate-
gic impact of usability research within companies. Major obstacles found by
the authors include resource constraints, resistance to user-centered design or
usability, as well as lack of knowledge about usability. Vredenburg et al. [284]
conducted a similar study and revealed that measurements of effectiveness and
common evaluation criteria across the industry are missing. This finding intensi-
fies the obstacles identified by Rosenbaum et al., since it objects the acceptance
of user-centered design in practice. Consequently, the authors suggested that

29



Chapter 2 Foundations

cost-benefit tradeoffs play an important role in the practical adoption of user-
centered design methods. For instance, while field studies were ranked high on
practical importance, companies seldomly used them due to their high costs.

Grudin [121] identified communication gaps between users and developers in
the 1990s, which were confirmed even 20 years later in a study by Heiskari and
Lehtola [136]. In particular, the authors revealed that there was little interaction
between users and developers. In addition, if users provided information, it did
often not reach developers. As a result, too little user information is present in
software companies. Heiskari and Lehtola additionally found that this informa-
tion is mostly scattered across different tools, unorganized, difficult to access,
and not integrated into existing development processes. As further consequence,
developers cannot assess what users actually want, or more specifically, their av-
erage opinion. Two factors further complicate such an assessment. First, users
often have contradictory expectations, leading to more different opinions to es-
timate. Second, typically only a subset of users is actually involved, making it
difficult to obtain a significant estimation.

Kujala et al. [167] pointed out an additional problem when gathering user
requirements. Even with the best of intentions, users might not be able to ex-
press their problems and needs, since part of their knowledge has become tacit
through automation. Grudin [121] further pointed out that in practice there
are always other forces which shape software when users are not involved, or
when accessing the relevant knowledge is too difficult for developers. In many
cases, these are even more directly connected with measurable and influential
properties of a software project, specifically budget and time. As a consequence,
users’ voices often remained ignored. Gould and Lewis [116] had already identi-
fied that user-centered principles were often not followed in practice. One major
reason according to the authors was the misestimation of its value, for instance
due to companies’ belief that users do not know what they want.

Heinbokel et al. [135] investigated effects of user participation and user orienta-
tion, and found that both were negatively affecting process and product quality.
From their explanations, we conclude that users in the studied scenarios were
given too much decisive power. For instance, developers needed to change the
design completely before delivering the software due to a late intervention by a
user. However, this study pinpoints that a major challenge lies in finding the
right mix of degree, time, and other user involvement dimensions. Only with
such a mix user involvement will have positive effects.

Conclusion 9. Studies have revealed three major challenges for user involve-
ment in practice. First, resource constraints often do not allow companies to em-
ploy effective user involvement methods. Second, measures of user involvement
effectiveness are missing, what prevents practitioners from assessing cost-benefit
tradeoffs. Third, there are a number of communication gaps between users and
developers. These can lead to little user information, which might be scattered

30



2.4 Summary

and difficult to access for developers. As a consequence, other forces than users’
needs and expectations shape software in practice.

2.4 Summary

User involvement in software engineering has become an established research
field [165], which is studied particularly at its intersection with human-computer-
interaction [24]. Its foundations go back to the early 1980s, in particular to
Gould and Lewis’ key principles of usability [115] which together with Norman
and Draper’s work [209] became the pillars of user-centered design, and Ives
and Olson’s work on the effect of user involvement on system success [146], one
of the first critical studies of user involvement in practice. User involvement
aims at maximizing the usefulness of a system by understanding users’ needs
and expectations. User involvement methods, which provide for a systematic
information exchange between users and developers, include multiple, social
and technical dimensions. During our literature review we found the following
important trends.

• User involvement has changed significantly over the last three decades,
mainly due to the radical progress of hardware and software. At the same
time software users changed from programmers or trained technical staff
to practically any person [120], causing a fundamental shift in developers’
attitude towards them [156]. With the advent of application distribution
platforms and mobile devices, neither users nor the complete use context
of software is known before actually delivering it. The consequence of this
evolution is an increasing distance between developers and users [121],
while more focus on users would actually be necessary to satisfy their
increasing demands [182].

• Various methods to involve users in software development have been pro-
posed [198], which provide different levels of decisive power to the involved
users [74]. However, in research and practice there is no common agree-
ment on the “optimal” degree of users’ influence on the developed system
[146], and probably never will [121]. Consequently, researchers have pub-
lished comparative studies and overviews to support practitioners in their
choices [24, 198]. Practical forces influencing design and development are
typically time and budget rather than user satisfaction [121].

• Most user involvement methods comprise the selection of a group of “rep-
resentative” users, since it is common belief that involving all users is im-
practical or impossible [166]. Selecting the right users is regarded as key
challenge for user involvement and requirements engineering [25, 212, 263],
with a wrong selection typically leading to serious limitations [74]. Due

31



Chapter 2 Foundations

to the restrictions on user representation and the complex, socio-technical
nature of user involvement in software development, information exchange
between users and developers is characterized by several gaps (e.g. [105,
120, 181]).

• User involvement methods have been proposed for early and late phases of
software development processes, fewer even span multiple lifecycle phases
[198]. Depending on the state of the system under development, developers
gather either prospective (early) or retrospective (later) user information
[136]. Research mainly investigates the benefits and challenges of early
user involvement [165] often with a focus on participatory practices, since
it is commonly accepted that changes become more expensive over time
[49]. While we agree with this fact, we claim that the yet undiscovered
field of user involvement during software evolution bears huge potential.
Specifically, there seems to be little research on how retrospective user in-
formation, i.e. user feedback, influences development and which challenges
and benefits it provides.

• Research has shown that user involvement can have positive effects on
system success and user satisfaction [165]. Specifically, increased user re-
quirements quality as well as improved usability and system usefulness
have been reported, leading to increased sales numbers and less mainte-
nance efforts [284]. However, in practice both cost and benefit of user
involvement determine its applicability, since resource constraints often do
not allow companies to employ effective user involvement methods [284].
But measures of user involvement effectiveness are missing, preventing
practitioners from assessing cost-benefit tradeoffs [284]. The various com-
munication gaps between users and developers can further decrease user
involvement effectiveness [121], leading to little user information, which
might be scattered and difficult to access for developers [136]. As a con-
sequence, other forces than users’ needs and expectations shape software
in practice [121]. This shows that there is still potential for more cost-
effective user involvement methods.

Most existing research about user involvement is concerned with gathering
user information in the early phases of the software development lifecycle. Nu-
merous studies have been carried out to explore the effectiveness of correspond-
ing methods. User-developer communication is essential during the early phases
of software projects, but phenomena such as IKIWISI [39] – “I’ll know it when I
see it” – indicate that it should not end there. While Boehm has made remark-
able groundwork introducing iterative design [41] and a project management
theory [40] to deal with these phenomena throughout the whole software lifecy-
cle, there is little research exploring how user involvement is applied in software
evolution practice, and which benefits and challenges it provides.

32



2.4 Summary

As mobile and ubiquitous computing is becoming mainstream, user require-
ments and contexts of use are less and less known upfront. At the same time,
users are becoming more demanding and exigent, while the internet and Web
2.0 in particular allows them to be more extroverted regarding their needs [182].
With application distribution platforms, software change frequencies increase,
and software becomes quickly available to practically any person. We claim
that it is therefore necessary to investigate how user involvement theory applies
to such scenarios, which problems developers experience and how they could be
supported. In the next chapter, we explore the current practice of user involve-
ment during the evolution of software

33



Chapter 2 Foundations

34



Chapter 3

Empirical Analysis of User

Involvement in Software

Evolution Practice

«Tables of primes constructed in 1776 by Antonio
Felkel were considered so useless that they ended
up being used for cartridges in Austria’s war with
Turkey.»

— Marcus du Sautoy, The Music of the Primes

In the previous chapter, we have analyzed the foundations of user involvement
as reported in literature. User involvement is a complex socio-technical process.
While we have found many methods to involve users, there seems to be no
consensus about the effectiveness of user involvement. Although there are studies
about user involvement in user-centered design projects, little is known about
how and why users are involved during software evolution, and which are the
benefits and challenges.

This chapter reports on an empirical case study which we conducted over three
months with the goal to analyze the current practice of user involvement during
the evolution of software especially with large user audiences. In particular we
wanted to understand how and why users are involved in practice. Our goal was
to find out what happens with user feedback in the development environment,
and what developers’ reasons and needs are. First and foremost, we aimed at
identifying problems and challenges in the current practice and workflows, but
we also wanted to glimpse at the practitioners’ requirements on tools which
would solve these issues.

Section 3.1 explains the study setting in terms of research questions and
methodology, and introduces the research data. The following three sections
summarize our research findings on the user involvement setting (Section 3.2),
developers’ workflows to analyze user feedback (Section 3.3), and developers’
requirements for and expectations of tool support (Section 3.4). Section 3.5
discusses implications of our findings for researchers, practitioners, and tool de-

35



Chapter 3 Empirical Analysis of User Involvement in Practice

signers and summarizes the limitations of our study, while Section 3.6 explores
related work. Section 3.7 summarizes our study.

3.1 Study Setting

We first summarize the questions that drive our case study. Then, we describe
the overall methodology we use to study user involvement in software evolution
practice. Finally, we give an overview of the subjects we study.

3.1.1 Research Questions

The goal of this case study was to understand how professional software devel-
opers involve users during software evolution, which problems they encounter,
and which benefits could be gained by resolving the encountered problems. We
were particularly interested in three aspects: their user involvement setting, their
workflows to analyze and work with user feedback, and their requirements for a
tool-supported consolidation and assessment of user feedback.

RQ 2.(a) User involvement setting describes how, where, and when users
may provide feedback. In particular, we aim at answering the following ques-
tions:

• Infrastructure: Over which channels do developers gather user feedback?

• Frequency : How often are users allowed to provide feedback?

• User-developer communication: Are users systematically involved?

RQ 2.(b) User involvement workflow details how and why developers work
with user feedback. We aim at identifying and understanding developers’ prob-
lems, answering the following questions:

• Motivation: Why is user feedback important?

• Analysis : How do developers analyze user feedback?

• Problems: Which problems do developers encounter, and which role do
quantity, quality, structure, and content of user feedback play?

RQ 2.(c) User involvement requirements summarize developers’ needs and
expectations regarding tool support for user involvement. We focus particularly
on user feedback consolidation and assessment, answering the following ques-
tions:

• Tool support : Do developers think that tool support for feedback consoli-
dation could improve user involvement practices?

36



3.1 Study Setting

• Consolidation: How should user feedback be consolidated?

• Assessment : Would developers embrace user and usage benchmarks sup-
plied by user feedback?

We formulated a set of 20 specific interview questions for these aspects together
with a set of answers to facilitate the interview process. Additionally, we col-
lected 7 meta-questions on the specific software project and about the subject’s
background, in order to enable a descriptive classification. The complete cata-
logue of questions can be found in Appendix A.

3.1.2 Research Method

Case studies can provide a detailed view on real-life situations and thus may
reveal the reasons and mechanisms why and how specific phenomena occur [87,
102]. Our goal was to explore user involvement in software evolution practice to
understand developers’ current workflows, their problems, and their motivation
to involve users. Additionally, we sought to describe and explain the situation
whenever possible. Consequently, our case study mainly served an exploratory
purpose, but sometimes exposes descriptive or explanatory character [250].

Our study proposition was threefold. First, we thought that developers appre-
ciate user feedback as important source of information about the acceptance of
their software. Second, we hypothesized that current user involvement practice
is unsystematic and bears several technical challenges and practical limitations
in particular due to the quantity, quality, structure, and content of user feedback
[217]. Third, we expected that developers embrace tool support which allows
them to deal with large amounts of user feedback and to assess the acceptance
and status of their software according to its users.

To collect qualitative data which helps to explore the practical situation and to
test our proposition, we conducted semi-structured and open-ended interviews
[242] with professional developers working at different software companies. Semi-
structured interviews allow for improvisation and thus facilitate an exploration of
the studied cases [250]. Rather than randomly choosing study cases, we selected
few software companies which develop and maintain interactive software for a
large number of users, and one company with a smaller user audience in order to
study potential effects of the amount of users. The selected companies allow their
users to provide feedback and are interested in understanding it. We employed
this purposive sampling strategy since we expected the resulting cases to be most
relevant to our proposition [87].

For our case study, we followed the design principles and procedures described
by Runeson and Höst [250]. As shown in Figure 3.1, our methodology consisted
of three phases: a preparation phase, a data collection phase, and a data analysis
phase.

37



Chapter 3 Empirical Analysis of User Involvement in Practice

Preparation Phase Data Collection Phase Data Analysis Phase 

Choose data collection 
method 

Explain study purpose Read transcriptions 

Choose case selection 
strategy 

Ask study questions Highlight unique 
statements 

Create case study protocol Record audio Code statements 
Formulate invitation 

template letter 
Transcribe audio Relate statements to 

questions 
Formulate consent 

agreement 
Send transcription to 

participants 
Select meaningful 

examples 
Preselect subjects Wait for corrections Compare statements 
Send invitation letter 
Send question catalogue 
Send consent agreement 

Figure 3.1: User involvement in software evolution – case study methodology.

3.1.2.1 Preparation Phase

After choosing the data collection method and case selection strategy, we created
a case study protocol in order to capture design decisions and document the data
collection process. Next, we formulated a template letter to invite participants
as well as a consent agreement to inform subjects about the study purpose and
their anonymity. The consent agreement also documents the explicit agreement
of the subjects to participate in the study. We sent the invitation letter per email
to six selected companies which were possibilities and waited for the invitees to
respond. Five developers agreed to the interviews. Around one week before
an interview, we provided the specific subject with the question catalogue. We
explicitly called their attention to the semi-structured nature of the interview,
and underlined that the questions should be regarded as support.

3.1.2.2 Data Collection Phase

Before starting each interview, we briefly explained the study purpose to the
participant and recalled the exploratory nature of the study. As suggested by
Runeson and Höst [250], we recorded each interview in an audio format after
having asked for the interviewee’s consent. The interviews took between 29 and
55 minutes, during which we asked the pre-defined questions as well as questions
as a reaction to each subject’s particular answers. After the interviews, we
transcribed the recorded audio with the help of the notes we had taken during
the interviews. We then sent each transcription to the corresponding interviewee
and asked for corrections, which we did not receive.

38



3.1 Study Setting

Table 3.1: Overview of interview partners and studied projects.

ID comp. w. exp. project role

S1 C1 6–10 developer

S2 C2 3–5 developer

S3 C3 3–5 developer

S4 C4 3–5 architect

S5 C5 6–10 prod. mgr.

platform user audience # active users rel. cyc.

both sp. consumers > 10,000 3 wks

desktop all 150,000–200,000 4 wks

mobile all consumers > 10,000 2–6 mos

mobile all consumers 100,000–200,000 2–6 mos

desktop sp. professionals 100–500 4–8 wks

3.1.2.3 Data Analysis Phase

We started analyzing the interviews by reading the transcriptions and highlight-
ing remarkable and particularly unique statements. Due to the semi-structured
nature of the interviews, the transcriptions did not always follow the order of the
pre-defined question catalogue. Moreover, subjects often complemented prior
statements as the interview proceeded, so that especially helpful details were
frequently given during later questions. We therefore decided to code the tran-
scriptions according to two schemata. First, the pre-defined question each state-
ment was answering, and second, the research question for which we regarded
it as relevant. The second schema was especially helpful to identify meaningful
examples for each research question. We then answered the research questions
by comparing the different statements.

3.1.3 Research Data

Five software companies agreed to take part in our case study. We interviewed
one participant per company. Each participant reported on one specific, closed
source, commercially successful project developed in her company. Table 3.1
gives an overview of the 5 participants and the studied projects. The column
w. exp. denotes the work experience of a participant in years, the column project
role her main role within the project.

Two subjects (S2 and S5) reported on desktop applications and two (S3 and
S4) on mobile applications, while S1 reported on an application developed for
both platforms.

In three cases (S1, S3, and S4) the users of the studied software are consumers,
a special consumer group in the case of S1, and all consumers in the case of
S3 and S4. From the remaining two subjects, S2 reported on an application
with a general user audience, while S5 develops software for a special group of
professionals.

Four of the five studied software projects (S1–S4) had a large number of users
(more than 10, 000), whereas the software referred to by S5 accounted for a
smaller user audience (less than 500).

39



Chapter 3 Empirical Analysis of User Involvement in Practice

Table 3.2: User involvement infrastructure: user feedback channels and fre-
quency of utilization –

E
R
_I
n

E
R
_A
p

E
R
_B
l

F
R
_A
p

F
R
_F
o

F
R
_B
l

F
R
_F
a

E
X
_A
p

E
X
_P
h

E
X
_B
l

R
A
_E
x

0 1 2 3 4 5

most

often

sometimes

rarely

most
often
sometimes
rarely

most often,

E
R
_I
n

E
R
_A
p

E
R
_B
l

F
R
_A
p

F
R
_F
o

F
R
_B
l

F
R
_F
a

E
X
_A
p

E
X
_P
h

E
X
_B
l

R
A
_E
x

0 1 2 3 4 5

most

often

sometimes

rarely

most
often
sometimes
rarely

often,

E
R
_I
n

E
R
_A
p

E
R
_B
l

F
R
_A
p

F
R
_F
o

F
R
_B
l

F
R
_F
a

E
X
_A
p

E
X
_P
h

E
X
_B
l

R
A
_E
x

0 1 2 3 4 5

most

often

sometimes

rarely

most
often
sometimes
rarely
sometimes,

E
R
_I
n

E
R
_A
p

E
R
_B
l

F
R
_A
p

F
R
_F
o

F
R
_B
l

F
R
_F
a

E
X
_A
p

E
X
_P
h

E
X
_B
l

R
A
_E
x

0 1 2 3 4 5

most

often

sometimes

rarely

most
often
sometimes
rarelyrarely

Channel Distribution

Er
ro

r
R
ep

or
ts Integrated
E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Email

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

AppStore

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Phone

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Blog

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Fe
at

ur
e

R
eq

ue
st

s

Email

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

AppStore

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Integrated

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Blog

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Forum

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Twitter

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Phone

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Facebook

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Channel Distribution

Fe
ed

ba
ck

Email

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

AppStore

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Integrated

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Phone

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Blog

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Forum

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

R
at

in
gs AppStore

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Rating site

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

Email

E
R
_I
n

E
R
_P
h

F
R
_A
p

F
R
_T
w

F
R
_F
a

E
X
_I
n
E
X
_F
o

R
A
_E
x

0 1 2 3 4 5

3.2 User Involvement Setting

Our interviews show that gathering user feedback plays an important role for
the studied subjects. All subjects report that their users may contribute using
error reports, feature requests, and feedback on existing features which includes
improvement and enhancement requests. All subjects but S5 also regard users’
ratings (e.g. in application distribution platforms such as the Apple AppStore
[13]) as important user feedback. While being aware of their importance in other
scenarios, S5 stated that ratings are irrelevant for the product she reported on.
Interestingly, S5 reported on the only software being developed for a smaller
group of professionals, what suggests that public ratings are less important in
such contexts. In contrast, S1, who develops a product for a large consumer
audience, regards ratings as the “most critical” user feedback which even can
“create tension” and “harm your product”. In particular if errors occur, users
tend to quickly give bad ratings, which in turn immediately affect sales numbers.
S1 illustrates the possible effects: “If you mess things up, they [users] will kill
your product”.

3.2.1 Infrastructure

Table 3.2 shows the user involvement infrastructure as reported by the subjects
in our case study. For four types of retrospective user information we asked
subjects to name the channels over which this user information reaches them,

40



3.2 User Involvement Setting

together with its relative frequency. In total we collected 9 different channels,
which shows that user feedback is currently widely scattered rather than being
a single source of information for developers. The top three channels for error
reports, feature requests, and feedback on existing features are common except for
their order. Emails, the AppStore, and mechanisms integrated in the software
(for instance a feedback library) account for the most user feedback at subjects’
companies. Ratings are mostly done in the AppStore, on particular rating sites,
and via email, while integrated mechanisms are not used. However, subject
S4 explained that their software prompts the user to rate the product after a
specific time period, which seems to be common practice for mobile applications.
None of the companies provides all users with access to a public issue tracker.
Nevertheless, S3 explained that at her company a public issue tracker is utilized
only in the case of one single software, whose users are professional salesmen.
Apart from this exception, all subjects agreed that issue trackers are best for
internal use only.

Hypothesis 3.1. User feedback is scattered across multiple channels, with email,
application distribution platforms, and integrated feedback mechanisms being fre-
quently utilized.

Interestingly, users seem to select the appropriate channel intentionally. S1
describes: “The more critical their feedback is, the more public is the channel
they choose.” She reported on a case where the company had to concentrate
on the mobile version of the software, and decided to delay the development
of some of the desktop version’s features. “At the beginning we received single
mails, but as more and more desktop users felt left over, they started a public
campaign on Facebook.” S2 confirmed this user behavior: “We had a user forum
but discontinued it, because the users allied to request features we did not want
to implement.” In particular errors are immediately published. According to
S1, users tend to give low ratings to apply pressure: “It creates a lot of tension
if your users write ’you’ll keep getting one star until you fixed X’.”

Hypothesis 3.2. Users intentionally select the feedback channel to apply pres-
sure by allying against the software company. The more critical their feedback
is, the more public is the channel they choose.

3.2.2 Frequency

In all studied companies, users may provide feedback continuously. In practice
this means that the feedback channels remain continuously open. Subjects S1,
S2, and S4 consequently report on a continuous stream of user feedback, with
dozens of messages per day. S2 counted around 300 messages per month, if no
new version is released. She further described that typically only very few users
provide feedback more than once, while the majority reports rarely or just once.

41



Chapter 3 Empirical Analysis of User Involvement in Practice

Table 3.3: User-developer communication modes across studied companies.

Feedback type C1 C2 C3 C4 C5
Error reports pull pull push push pull
Feature requests pull push push push push
Feedback push push push push pull
Ratings push push push pull push

On the other hand, C3 and C5 receive less feedback, for two different reasons.
C3 develop software on behalf of other companies. Therefore, they typically get
presented with feedback digests, pre-selected user feedback, or feedback reported
by their customer. S5 on the other hand explained that their users, who all use
the software professionally, first collect several ideas and feedback and then send
one single message which contains them all. Consequently, C5 receives feedback
less frequently but in high concentrations.

In general, users seem to give feedback just as their concern happens. Subject
S1 explained that therefore user feedback and product backlogs might contradict
each other: “The question is always when and to what extent do you consider
the feedback. But if they really shout, you need to react quickly.”

Hypothesis 3.3. Users frequently provide feedback, but user feedback does not
always reach developers.

3.2.3 User-Developer Communication

None of the studied companies employed focus groups or a similar user involve-
ment method to gather user feedback after the product launch, for instance to
assess a planned new feature. Only C3 had conducted focus groups in the be-
ginning of single business-to-business projects, but with their customers instead
of end users. S3 explained that focus groups were regarded helpful to get to
know a new application domain. Moreover, S3 claimed it was common practice
that end users are not involved until the launch of a product, while customers
typically take the role of the end user during the initial development phase.
However, customer involvement seems to serve a purpose other than eliciting
user requirements, as S3 justified this practice stating that “customers know
what they want, but not how it should look like”.

User-developer communication is established differently across all studied or-
ganizations, as illustrated in Table 3.3. Error reports are automatically triggered
in the case of C1, C2, and C5, where users are asked to provide their error reports
after a crash has occurred. C1 explicitly trigger feature requests, as S1 describes:
“Sometimes we ask our users on Facebook what they desire, and usually get con-
structive suggestions.” Feedback on current features is explicitly requested only
in the case of C5, who role out beta versions to selected users. Finally, C4 ex-

42



3.3 User Involvement Workflow

plicitly trigger product ratings after fixed time periods by redirecting the user
on a specific AppStore page.

An interesting observation was made by S5, who distinguished four different
communication types. First, conversations with users at fairs are triggered by the
users and may eventually lead to new product ideas. Second, beta versions made
available to selected users trigger frequent, personal, bi-directional discussions.
Third, users proactively ask questions on features in pre-sales software versions
they have used for a short time. Finally, the typical “support communication”
regards users’ experience with a product which they have bought and used for
a longer time.

The most systematically supported feedback type seem to be error reports,
as all studied products are capable of including automatically generated stack
traces and usage data as an error occurs. The reason may lie in the very concrete
nature of errors. It is evident when they happen, and quite straightforward to
automatically collect related information with established development frame-
works or libraries. All other user feedback is not “machine-readable” and in par-
ticular lacks a tangible trigger. As a consequence, there is no common practice
neither on providing nor on gathering such feedback. For instance, S5 explained
that their users include multiple suggestions in one message and often even mix
different feedback types. On the other hand, companies do not systematically
“educate” their users to a common, helpful way of giving feedback.

Hypothesis 3.4. Users are not systematically involved during software evolu-
tion. Apart from error reports there is no commonly agreed practice neither how
to provide nor how to gather user feedback during software evolution.

3.3 User Involvement Workflow

When investigating their user involvement workflow, we asked our subjects why
and how they work with user feedback and which problems they encountered.

3.3.1 Motivation

The main motivation to appreciate user feedback seems to be its origin: the
user. Our interviews revealed that companies are interested in their feedback
particularly because of two reasons. First, companies are interested to satisfy
user needs, since eventually users buy their products. Users’ goodwill can quickly
turn into anger, and even harm the company, if they get frustrated with the
software. Consequently, software companies continuously seek to assess the
acceptance of their products. Second, developers need real-world data from
users’ environments, be it statistics about which feature is used or which errors
occur most and in which context. Such data is especially helpful to complement
software tests and to align development efforts with feature importance.

43



Chapter 3 Empirical Analysis of User Involvement in Practice

Hypothesis 3.5. User feedback supports the continuous assessment of product
acceptance and serves as real-world usage data.

All subjects agreed that user feedback is helpful to reach three main goals:
to improve software quality, to identify missing features, and to advertise and
market a product.

Improve Quality Users typically help to improve software quality by reporting
latent errors. S4 explains that problem reports are the feedback they are most
interested in: “Often we get problems which we couldn’t think of before, since
users have very heterogeneous configurations on their machines.” S5 further
illustrates the value of error reports: “We need crash reports and stack traces.
Without them we would not know which crashes happen out there.” In single
cases, products were even released with few presumably insignificant known
bugs. But they turned out significant instead, what eventually affected ratings
and sales numbers.

Hypothesis 3.6. User feedback helps to improve software quality.

Identify Missing Features We found that users of all studied companies fre-
quently request additional features. On the one hand, companies appreciate this
feedback as it helps to perfect a product. S1 illustrated that missing features
affect product acceptance: “From their comments we could see that they will
never accept our product without this feature.” On the other hand, companies
need to be ahead of their users and cannot create products by simply reacting
to their feedback. Instead, products are developed following internal roadmaps,
while external feature requests are only regarded as additional support and sign-
posts. S4 named one important reason for this: “We filter very wisely, because
we do not know how many people this will really help.” This information need
was also confirmed by the other subjects. As a consequence, small, incremen-
tal, perfective feature requests are rather heard than revolutionary new ideas.
S5 explained that professional software users are aware of this fact: “Our users
thoroughly make up their mind what could improve their workflows and increase
their profit. Then they argue that it would help other users as well.”

Hypothesis 3.7. User feedback helps to identify missing features, but developers
need to assess how many users will benefit from a specific new feature.

Advertise and Market Product All subjects agreed that in particular two
types of user feedback benefit their marketing. First and foremost, having many
positive ratings in application distribution platforms and particular rating sites
pushes applications into top lists, which in turn leads to more downloads and
higher sales numbers. S4 illustrated that this was the reason why they explicitly

44



3.3 User Involvement Workflow

!"#$"%&'(#)"&%

*+,#-),%&./$0"%1""23-)4&%

5&&"&&%./2.6.2(-0%7#.'#.,8%

*&9:-,"%.:7-),%

;0-&&.18%1""23-)4%

!"#$%&'()*+,&'

!"#$%&',-*#.('

/(&+'0&&123,.'

!"#$%"%&'()!*%+#)

4+")+"56'

7893,5'

,"-%.#)!*%+#)

:++)+'+&9)+5''#'0&35*+&'+&;*&(5'

</&"#,%./%)'/6"/9'/-0%
,''0&%-/2%='#4>'=&%

Figure 3.2: User feedback analysis process.

ask the user to rate the application after a specific time. S1 explained the
underlying reason: “We have a five star product in the AppStore. Together
with the price this creates trust among the users.” Second, several users write
about specific applications in their blogs or other social media. Both S2 and
S5 reported on cases where a user had requested a feature which was later
implemented, whereupon the user publicly praised the company. The subjects
perceived such user-generated experience reports as important multipliers.

Hypothesis 3.8. User feedback helps to advertise and market a product by con-
veying trust in the form of positive ratings and experience.

3.3.2 Analysis

The interviews show that studied companies examine user feedback in order
to create corresponding todos and prioritize them. We found that all studied
companies follow a common, iterative process to analyze user feedback, which
comprises two phases and six steps, as shown in Figure 3.2.

Preparation Phase The preparation phase comprises steps to collect feedback
from different sources and assign it a coarse-grained category.

In the first step, developers merge the information they get over different
feedback channels. This is necessary, since user feedback is obtained in various
ways such as via email, phone calls, or over the AppStore. However, not all
channels are equally suitable for a specific feedback type. S2 explained that in
particular error reports were not really helpful when reported for instance by
email, since typically important context information is missing: “In such a case
we answer them to report the error via the integrated feedback mechanism.”

45



Chapter 3 Empirical Analysis of User Involvement in Practice

In the second step, developers read user messages and extract the included
suggestions, which might be multiple for a single message. To what extent users
provide digest-like feedback seems to depend particularly on the specific user
audience, as claimed by S5: “In our market segment it is quite typical that users
are willing to provide feedback. Sometimes our users see themselves more as
testers or co-developers.”

In the third step, developers decide if the feedback reports a problem or re-
quests a feature. All studied companies make this simple distinction, in partic-
ular to be able to direct the report quickly in the right workflow. Error reports
are typically more critical than feature requests, and therefore require a faster
reaction. C1 and C2 explicitly maintain two feedback lists for this purpose. The
other subjects did not report about explicit lists, but consistently made this
distinction when talking about their workflows.

Triage Phase The triage phase comprises steps to assign feedback a priority
and convert it into common project artifacts.

In the fourth step, developers assess the individual priority of the feedback.
In the case of an error report, they estimate how critical a reported error is,
while for a feature request developers assess if it is qualified, suitable to improve
the product, and fits into the product roadmap.

In the fifth step, developers estimate the impact of the user feedback by in-
vestigating how frequently it occurs. To this end, they relate multiple pieces of
feedback to each other to find commonly reported issues and needs. Our inter-
views suggest that this step is more difficult for feature requests than for error
reports because of three reasons. First, in case of an error all studied companies
could access stack traces, which could be symbolized and compared by tools.
Feature requests on the other hand, are hand-written and need to be read and
understood in order to compare them. Second, error reports typically refer to a
singular, concrete event, while features and the underlying user needs might be
complex. Third, while the similarity of error reports can typically be calculated
by comparing stack frames, the similarity of feature requests might be rather
subtle. S5 explained that two similar feature requests might seem unrelated
at first glance: “Users might request different things, but their underlying goal
might be the same. Our task is to abstract from the actual request, to think
about the why, and to anticipate what is really missing on a conceptual level.”

In the last step, developers establish a connection with conventional devel-
opment tools and workflows. Our interviewees illustrated two particular ways.
First, user feedback is discussed in team meetings. In the case of C1, C4, and
C5, multiple developers collect user feedback and discuss the results in recurring
meetings. We found that such exchanges were considered particularly useful as
an additional tool to identify frequently occurring errors and feature requests.
Second, developers create tickets from user feedback and insert them into the

46



3.3 User Involvement Workflow

Table 3.4: Perceived complexity of and satisfaction with current user feedback
analysis practice.

Subject Amount of feedback Perceived complexity of
comparing feedback

Perceived satisfaction

S1 high somewhat difficult somewhat unsatisfied
S2 high very difficult very unsatisfied
S3 low somewhat difficult somewhat satisfied
S4 high somewhat easy undecided
S5 medium very difficult undecided

internal issue tracker. Interestingly, our impression was that user feedback is
considered rather “fluid” until it manifests as a concrete task in such a tool.

Hypothesis 3.9. Developers analyze user feedback in order to create prioritized
tasks which fit into the product roadmap. The priority of a specific feedback
depends on the frequency of its occurrence.

3.3.3 Problems

All studied subjects agreed that it takes the most time to read and understand
user feedback as well as to assess its impact by identifying for how many users
it applies. We identified three main reasons: content and quality of user feed-
back, employed analysis techniques and feedback quantity, and the suboptimal
communication between developers and users.

Content and Quality of Feedback Our interviews show that especially user
feedback written in natural language is a problem for developers. These texts
are typically written from a subjective perspective which requires developers to
get into the user’s mind to be able to reproduce her issue or request. But often
information which would be essential to understand the feedback is missing.
As illustrated by S1, users also typically regard their feedback as very critical
while it might not be for the development team: “Some users are in the habit of
shouting quite loud, but they don’t really mean it.” Moreover, depending on the
software, features and user workflows can be complex leading to complex feature
requests or issues. All subjects but S5 further explained that user feedback
often has poor quality, in particular in the case of comments in the AppStore.
According to them, a substantial part of these comments are unqualified and do
not add any value. However, developers can only interpret feedback by reading
or at least browsing it. It seems that the time required for this task increases
developers’ disenchantment with user feedback. S2 confirmed this interpretation:
“Often users write a lot of text, but then it turns out that they just used or
configured the software wrongly. At first this causes a lot of trouble, and then

47



Chapter 3 Empirical Analysis of User Involvement in Practice

you find that it was the users’ fault.” Last, our interviewees reported that user
feedback is often contradictory. For instance, S1 illustrated that part of their
users consistently requests advanced, professional features, while the other part
appreciates simplicity and the easy entry. Among our subjects contradicting
preferences are currently ignored, and the internal product roadmap is followed
instead, as S1 explained: “We ignore contradicting feedback until there is a clear
opinion in the community.”

Hypothesis 3.10. Content and quality of user feedback affect its analysis. Nat-
ural language content and low feedback quality, as well as contradictory user
feedback constitute particular problems for developers.

Manual Analysis and Quantity of Feedback We found that the subjects
analyze user feedback almost exclusively in a manual way. Consequently, in
particular companies which receive a large amount of feedback spend consider-
able effort on its analysis. S2 pinpoints the limits of this practice: “Oftentimes
we need to mark the mails as read, because we do not have the resources to
really read them all.” The analysis process suggests that developers even read a
specific feedback multiple times while analyzing it. Our subjects reported that
in particular assessing criticality and impact is a difficult and time-consuming
task. To accomplish it, developers need to compare new feedback to the already
reported in order to find duplicates or similar suggestions. Consequently, a single
request can require the developer to examine multiple other feedback messages.
We asked our subjects about their satisfaction with the currently established
analysis process, on a 5-point Likert scale (1: very unsatisfied, 3: undecided,
5: very satisfied). The average response lies between somewhat unsatisfied and
undecided (mean=2.6), as shown in Table 3.4. Although the gathered data does
not allow for generalization, our interviews suggest that the amount of received
feedback as well as the perceived complexity of the analysis task might have an
influence on developers’ satisfaction with current practice.

In contrast to other feedback types, automatically generated crash reports
which contain machine-readable information, might be analyzed automatically.
C1 and C5 employ analysis tools which are capable to use this information to
group multiple reports according to the similarity of the reported stack frames,
and thus to provide a measure for the impact of an error.

Hypothesis 3.11. Developers analyze user feedback mainly manually and read
single feedback multiple times.

Hypothesis 3.12. Developers spend most efforts on assessing the priority and
impact of user feedback. The main reason therefore is that developers need to
manually estimate how many users are affected by a specific feedback.

48



3.4 User Involvement Requirements

Communication Gap between Developers and Users Our interviews depict
a communication gap between developers and users. Because developers obtain
user feedback over different channels, it often gets copied from one medium to
another. This typically removes the possibility – if any – to react on the feedback
without major efforts, for instance to ask clarification questions. Furthermore,
it increases developers’ distance to the reporter. Many feedback channels allow
only for one-way communication from users to developers in any case, which is
typically not effective. A prominent example often referred to by our subjects is
the AppStore, where users publish feedback under a self-assigned name. While
there are no built-in means to reach a specific user, S3 exemplified how developers
try to bypass this gap: “We do ’social reverse-engineering’, meaning that we try
to find a user on Facebook or Xing who left a bad comment in the AppStore,
by searching for the reported username. Then we ask if we could set up a
remote debugging session.” The absence of mechanisms which allow developers
to contact feedback authors is perceived as a serious limitation by our subjects.
S1 illustrated one effect of this gap: “Often there is no real error, but the user
did not understand a specific feature. But we cannot get back to them. Instead
we are forced to change the AppStore description to clarify the feature, or to add
additional help files.” Most feedback reporting mechanisms further do not allow
users to edit their feedback. Subject S2 mentioned this as a severe limitation
because of two reasons. First, users seem to report problems often too hastily,
but later cannot cancel their feedback. Second, in some cases users provide
clarifying information later, but cannot associate it with their prior feedback.

Hypothesis 3.13. Users and developers are disconnected due to communication
gaps in user feedback channels.

3.4 User Involvement Requirements

We explored requirements for tools that support the user involvement workflow,
asking subjects if and how user feedback should be consolidated and whether an
assessment of its potential was regarded as helpful.

3.4.1 Tool Support

Our interviews show that developers generally would embrace tool support to
consolidate user feedback. In particular they hope for a better structure among
the gathered feedback and expect to save time, if user feedback could be grouped
semi-automatically or automatically to support impact analysis. S4 pointed out
that user feedback should be regarded as important development artifact, for
which longitudinal tracking facilities are necessary. We think that companies
receiving large amounts of user feedback will benefit from tool supported feed-
back consolidation, while we expect less impact on companies which only receive

49



Chapter 3 Empirical Analysis of User Involvement in Practice

few feedback messages. Further, S1 and S5 remarked that new tools really need
to add value to be accepted.

Hypothesis 3.14. Developers need tool support to consolidate, structure, ana-
lyze, and track user feedback, particularly when feedback volume is high.

3.4.2 Consolidation

We asked our subjects about their preferences for two different ways to consol-
idate user feedback: A re-active approach collects user feedback as before and
analyzes the collected data afterwards. A pro-active approach tries to avoid du-
plicate feedback by presenting reporters relevant existing feedback they should
vote for.

All subjects, except S5, preferred the pro-active approach and gave two main
reasons. First, it takes most of the work off the developers’ shoulders, since
priority and impact are basically results of the number of votes. Second, it
avoids duplicates and thus unnecessary traffic. Consequently it allows developers
to concentrate only on important feedback.

S5 preferred the re-active approach to avoid biasing their users: “If you bias
the users with other user feedback, you will probably restrict the creativity of
the users.” S5 acknowledged that the pro-active approach might be more ap-
propriate in cases where developers receive a higher amount of feedback or users
are not professionals. Interestingly, S4 regarded both approaches as reasonable
for different situations, depending on privacy. According to the subject, the re-
active approach is more appropriate for feedback which is currently not public
such as phone calls, while the pro-active approach could be employed for publicly
visible feedback such as AppStore reviews.

When asked according to what a tool should consolidate user feedback, studied
subjects particularly favored three features. First, all subjects agreed that in
particular duplicates should be grouped together. Moreover, subjects explained
that while two users might have made the same experience with the software,
their reports might be quite different, what should be considered by any such
tool. Second, all subjects agreed that the type of feedback should determine a
feedback group as before. Third, all subjects, except S4, reported that it would
be helpful to know the feature to which a feedback applies. S1 mentioned that it
would be helpful to be able to structure the received feedback “like the software”.

Hypothesis 3.15. To consolidate feedback, tools should group duplicate or sim-
ilar feedback, capture the feedback type, and the feature for which it applies.

Hypothesis 3.16. Pro-active tools are appropriate for high volumes of non-
confidential feedback, while re-active tools are more appropriate for less feedback
and more professional end users.

50



3.5 Discussion

3.4.3 Assessment

Our interviews show that developers constantly need to assess the potential of
user feedback to improve their software and its impact within the user commu-
nity. All studied subjects confirmed that they would appreciate tool support for
this assessment, because it may influence the further development plans. When
asked how they would estimate the importance of user feedback, our subjects
specified two main measures. First and foremost, the frequency of a specific
feedback, i.e. how many users provided the same or a similar feedback. Most
subjects utilize this quantitative benchmark already today, but in most cases
they estimate it manually. S1 particularly regretted that they are therefore cur-
rently only able to react slowly on community trends: “We can only measure
the frequency when we already have set our users up.” The main factors slow-
ing down reaction time include the low visibility of existing feedback for other
users, the scattering of feedback across multiple channels, as well as the manual
analysis of user feedback by developers. Second, all subjects would include an
assessment of the individual user who reported the feedback into the bench-
mark, and specified several measures for such an assessment. They considered
it important to know for how long and how often the reporter has used the
application, as pinpointed by S1: “If we have a user who uses our software twice
a day for several hours, her feedback is probably more important than feed-
back of a casual user who ’accidentally’ bought the software.” S2 and S4 would
further base their assessment of a user on the past experience with that user:
“Frequency is important. But if a user always reports inappropriate feedback,
we would not want this to be highly prioritized. Quality over quantity.” [S2].
All subjects stated that they manually keep track of particularly helpful users.
However, only S2 and S3 also treat their feedback differently, which typically
means reading it first. Moreover, all studied companies except C1 let these users
know that they are important, for instance by thanking them via email (C3) or
by issuing coupons (C3, C5).

Hypothesis 3.17. To support impact analysis, tools should measure the fre-
quency of user feedback and provide developers with an individual assessment of
the reporter.

3.5 Discussion

We discuss the implications of our findings for researchers, practitioners, and
tool designers and summarize the limitations of our study.

51



Chapter 3 Empirical Analysis of User Involvement in Practice

3.5.1 Implications

User feedback contains important information for developers which helps to im-
prove software quality and to identify missing features. In order to assess its
relevance and potential impact, developers need to analyze the gathered feed-
back. High efforts are needed for this analysis, as developers mostly accomplish
it manually.

3.5.1.1 Implications for Researchers

In order to facilitate user feedback analysis, researchers should investigate the
main factors that contribute to its complexity and explore how it can be au-
tomatized. We see two main implications. First, since user feedback is typically
natural language text whose quality might be poor, it is difficult to determine its
content automatically. Research should investigate how to extract information
from such artifacts, for instance using microtext understanding or island pars-
ing methods. Second, user feedback often lacks important context information
which can facilitate understanding and help developers to reproduce reported
issues. Consequently, researchers should examine how context information can
be made available for the analysis process.

3.5.1.2 Implications for Practitioners

Based on our results, we give three advices to developers. First, know your
audience. Our study suggests that different user audiences provide feedback in
different ways. Consumers seem to report ad-hoc, while professional users might
elaborate more on their feedback. In either case, developers should provide
suitable channels to gather the specific kind of feedback. Second, reduce the
number of feedback channels. We found that feedback is typically scattered
across several channels. As a consequence, developers merge feedback gathered
over multiple channels, which reduces traceability and increases the gap to their
users. Developers should identify which feedback type is supported best by
which channel and discontinue other channels. Channels which allow for two-
way communication should be preferred. Third, educate your users. Companies
who decide to take user feedback seriously, need to explain their users how to
provide helpful feedback. For instance, multiple requests within one message
might complicate its analysis, while indicating the type of feedback might be
helpful.

3.5.1.3 Implications for Tool Designers

User feedback is a rich source of information. Our study has shown that devel-
opers work through this information in order to create conventional, prioritized
development tasks. Developers need tool support to facilitate consolidation,

52



3.5 Discussion

structuring, analysis, and tracking of user’s feedback, especially when the oc-
curring volume is high. Tool designers should investigate how developers can
be assisted during these tasks. Our results suggest that novel tools should iden-
tify similar and duplicate reports, capture the feedback type, and document the
affected feature. Developers’ main information needs include the impact of feed-
back in terms of its frequency as well as an assessment of the individual reporter,
for instance how often and for how long she has used the software or how often
she has already reported.

3.5.2 Limitations

As with any research methodology, our choice of research methods has limita-
tions.

3.5.2.1 Construct Validity

With this study we aimed at exploring problems and information needs in current
user involvement practice. Construct validity therefore measures whether these
concepts can be correctly reflected by means of interviews. First, interviews
obviously rely on the statements of the participants, which might be subjective.
While subjectivism is difficult to eliminate in interviews, we limit its effects by
basing our findings exclusively on the statements of multiple subjects. Further,
the semi-structured nature of our interviews allowed us to react on participants’
statements, and to ask why-questions whenever needed, while guaranteeing at
the same time that all participants answered the same questions. Second, sub-
jects might not even be aware of the occurring problems. To limit this effect,
we concretized questions related to problems, asking which tasks take much
time, are subjectively difficult, and which information are needed to accomplish
them. Other studies (e.g. [136, 162, 298]) support our findings, what makes us
confident that the identified problems are real. Ensuring construct validity for
empirical studies of software developers is always a complex task, specifically as
such studies typically require the researcher to abstract from observed behavior
or gathered information. Therefore, we encourage other researchers to replicate
this study or enhance it for instance by means of observation.

3.5.2.2 Internal Validity

Because our study is of exploratory nature, its internal validity is determined
mainly by the evidence we have used to generate our hypotheses. We therefore
discuss the two main factors which might affect the soundness of our observa-
tions, and illustrate how we tried to limit them. First, the interviewer might
be biased towards the study proposition. In other words, he might have had a
priori expectations and assumptions, and could have sought to confirm them. In

53



Chapter 3 Empirical Analysis of User Involvement in Practice

order to limit this threat, we recorded the audio of each interview, transcribed
the recorded audio, and sent the transcription back to the interviewees asking
for corrections. Likewise, we sent the participants a copy of our hypotheses,
and requested their feedback. All participants agreed with our findings. Sec-
ond, participants might have given answers which are not completely reflecting
their work practice, because they knew the results would be published. While
this threat can never be completely eliminated in interviews, we addressed it by
guaranteeing the complete anonymity of our participants and their companies.

3.5.2.3 External Validity

The applicability of our findings has to be established carefully. The main limit
to the generalizability of our findings results from the fact that we have inter-
viewed only five subjects. We could increase confidence in our hypotheses by
interviewing more subjects from a larger cross section of application domains
and user audiences. On the other hand, all studied subjects are software pro-
fessionals with over 3 years of practical experience in industrial companies and
fill different roles. Moreover, studied projects span different domains, different
amounts of users, and different user audiences, which makes us confident that
our findings are representative. Finally, this study is of exploratory nature and
was not designed to be largely generalizable. Its main idea is to explore and un-
derstand how developers deal with user feedback during software evolution, and
which problems they encounter. To this end, we formulate hypotheses which
should be validated by future studies of larger populations. Consequently, we
avoid answering yes/no questions but concentrate on identifying common, real
problems and information needs.

3.6 Related Work

Most studies about user involvement in practice explore the “early” phases of the
software development lifecycle, i.e. mainly requirements engineering activities,
and specifically investigate how and to which degree users are involved [284], and
which effects such involvement has on product acceptance [165]. Only few other
studies are concerned with exploring how developers work with user feedback
during software evolution, and which problems they encounter.

Ko et al. [162] investigate what constrains evolution decisions in development
teams, and found two main factors. First, developers were more likely to ad-
dress feedback they believed to be shared by the majority of the users. Similarly,
conflicting needs and preferences among the users reduced the probability for a
feedback to be addressed. Our study confirms these findings (Hypotheses 3.9
and 3.10), and additionally concludes that developers often lack the necessary
information to be able to assess the stake size for a given feedback (Hypothesis

54



3.7 Summary

3.12). The second factor is related to how deep an intervention would be required
to address a specific user feedback. Correspondingly, our subjects reported that
user feedback should fit into the product roadmap. Ko et al. conclude that feed-
back is a significant source of knowledge about user practices, what is confirmed
by our results (Hypothesis 3.5). Interestingly, the authors argue that user feed-
back should be treated as a signal that further research is needed rather than
as a guide for what to change. The main reason lies in the way developers cur-
rently react to user feedback which can lead to hardening the original software
design. In contrast, we claim that developers need novel tools which fill their
information needs, and allow them to measure the impact of user feedback.

Heiskari and Lehtola [136] investigate user involvement in practice without fo-
cusing on a specific development lifecycle phase, and identify several challenges
which are confirmed by our study. First, similarly to our results the authors
found that user information is scattered, unorganized, and difficult to access
(Hypothesis 3.1), and that there is no clear and common process on understand-
ing users (Hypothesis 3.4). Second, while feedback and other user information
were considered important, the authors found that there is too little of this infor-
mation available for developers (Hypotheses 3.5 and 3.12). Moreover, the study
revealed that determining the average end user opinion is a hard task, what was
confirmed by our interviews (Hypothesis 3.10). Finally, the authors discovered a
need for the integration of user knowledge into existing development processes.
We argue that this supports our finding that developers need tool support to
deal with user feedback (Hypothesis 3.14).

Zimmermann et al. [298] specifically focus on developers’ problems with bug
reports in open source projects. One result of their study is that poorly written
reports as well as missing information particularly hinder developers from un-
derstanding and reproducing issues, which is also confirmed by our interviews
(Hypothesis 3.10). The authors further revealed a mismatch between informa-
tion needed by developers’ and information which users actually provide, what
intensifies our Hypothesis 3.4: in the projects we studied, error reports typically
include automatically generated information to support developers. Finally, the
authors showed that well-known users’ feedback is likely to get more attention,
regardless of its importance. Similarly, our interviews showed that developers
are interested in an individual assessment of the reporter (Hypothesis 3.17).

3.7 Summary

In this chapter, we described an empirical case study which we conducted with
software professionals, in order to analyze the current practice of user involve-
ment during software evolution, specifically for cases with large user audiences.
We were particularly interested to find out how and why practitioners gather
end user feedback during evolution activities. Our goal was to understand,

55



Chapter 3 Empirical Analysis of User Involvement in Practice

what happens with user feedback in the development environment and why, and
which information developers need. We mainly aimed at collecting problems and
challenges in developers’ workflows, but also tried to identify necessary charac-
teristics of tools which could assist practitioners during their work with user
feedback. Our findings can be summarized as below:

• Users provide feedback frequently and using different means, with the re-
sult that information is scattered across multiple channels in development
environments, what complicates developers’ work and widens the gap be-
tween users and developers. Users seem to know that their published
feedback applies pressure on software companies, since they intentionally
select more public feedback channels the more critical their issues are.

• Current user involvement practice is not systematic. There is no commonly
agreed way neither how to provide nor how to gather user feedback, and
no guidelines for users on what makes a “good” user feedback.

• Developers need user feedback, in order to assess if their product is accepted
and to gather real-world usage data. User feedback is helpful to improve
software quality, to identify missing features, and to advertise and market
a product.

• Developers analyze user feedback in order to create prioritized tasks that
fit into their roadmaps. The priority of these tasks mainly depends on the
impact of the feedback, i.e. on the frequency of its occurrence. But for this
purpose, developers need to assess how many users are affected.

• Several problems complicate the analysis of user feedback. Feedback mes-
sages are typically written in natural language, might have poor quality,
and can contradict each other. Further, developers typically need to es-
timate feedback impact manually and consequently spend many efforts
on this assessment, partly also because it involves reading single feedback
multiple times. Finally, users and developers are typically detached since
the utilized channels often only allow for one-way communication. As a
result of these problems, developers often ignore feedback, simply sticking
with their product roadmaps and development plans.

• Developers would embrace tool support to consolidate, structure, analyze,
and track user feedback, in particular when feedback volume is high. Such
tools should at least be able to group and count duplicate or similar feed-
back, capture the feedback type, and provide developers with an individual
assessment of the reporter. In cases of high volume of non-confidential
feedback pro-active tools are more appropriate, while less feedback and
professional end users suggest that a re-active consolidation approach is
suitable.

56



Chapter 4

Grounded Theory on Continuous

User Involvement

«Every act of knowing brings forth a world.»

— Humberto R. Maturana and Francisco Varela,
Tree of Knowledge

In the previous chapter we have analyzed how professional software developers
deal with user feedback during software evolution and identified several prob-
lems. Developers need to identify similar reports and group them according to
the user experience described, in order to assess the impact of user feedback.
We found that these tasks require high reading, comprehension, and structuring
efforts, in particular due to the high quantity and low quality of user feedback
and because feedback is scattered across several channels.

Our goal is to facilitate developers’ work by providing tool support for the con-
solidation of user feedback, thus lowering the required efforts for continuous user
involvement. Specifically, we want to harness user communities to automatize
the assessment of user feedback impact.

This chapter establishes the theoretical foundations of our approach by de-
scribing a grounded theory on continuous user involvement relying on user com-
munities. To this end, we study two phenomena. First, we explore regularities
in how users and developers communicate in open source communities in order
to understand how these two groups should be connected. Second, we investi-
gate how users currently provide feedback in application distribution platforms
in order to understand how user feedback can be consolidated.

Grounded theory [70, 111, 192] is a systematic research methodology which
was first described 1967 by the social scientists Glaser and Strauss. Since then
it has been applied in different research areas mainly for qualitative research
(e.g. [73, 75, 255]). Unlike traditional research methodologies, its goal is to
derive a consistent set of hypotheses and discover a theory by analyzing the
underlying empirical data. In the area of software engineering, such an approach

57



Chapter 4 Grounded Theory on Continuous User Involvement

user community involvement 

ind
ivi

du
al 

us
er 

inv
olv

em
en

t 
Transactional 

Software Popular Software 

Collaborative 
Software Social Software 

low
 

low 

hig
h 

high 

Figure 4.1: Benchmark for software socialness (following [173]).

is particularly appropriate to investigate social and human aspects – such as user
involvement.

Section 4.1 motivates our research, while Section 4.2 presents our proposition.
Section 4.3 briefly introduces the methodology we followed. In Section 4.4 we
summarize how users and developers communicate in open source software com-
munities. In Section 4.5 we present our findings on how users provide feedback in
a large application distribution platform. Section 4.6 summarizes the grounded
theory and concludes the chapter.

4.1 Motivation

The socialness of a software system is defined as the degree of involvement of its
users and their communities in the software lifecycle [182]. In practice, social-
ness ranges from no involvement, to little involvement (e.g. public bug tracker),
and to complete involvement in open source communities. Figure 4.1 illustrates
four different classes of software systems according to their socialness. Users of
transactional software are pure consumers with little to no possibility to con-
tribute and promote the software. Popular software instead involves a large user
community, which can be an indirect yet important means to create additional
value. Collaborative software users are actively involved in the evolution by pro-
viding new ideas or performing other even more advanced engineering activities.
Finally, social software involves a community of users, who actively contribute
to the evolution of the software and pro-actively enlarge their community. Note
that as opposed to collaborative software, collaborative media represent sys-
tems which facilitate collaboration (e.g. Wikis). Similarly, as opposed to social
software, social media represent systems for social networking and interaction

58



4.2 Proposition

(e.g. Facebook or blogs). Software can be collaborative or social, independently
from its features and domain.

The overall goal of our research is to increase the socialness of any software
– be it closed source or not – since we assume that the continuous involvement
of users and their communities is beneficial for both users and developers. We
aim at making the involvement of users and communities a first order concern
in software evolution by systematically utilizing valuable user experiences and
volunteered resources.

4.2 Proposition

Our research proposition was twofold. First, we hypothesized that user com-
munities bear high potential as indicator for the impact of user feedback. We
assumed that such an indicator can help to reduce developers’ efforts with con-
tinuous user involvement during software evolution. Further, we were convinced
that users are willing and able to provide helpful feedback when chances are that
it improves the software they use.

Second, we expected that conventional user feedback includes important in-
formation for developers, and that this information is occurring repeatedly. We
assumed that such regularities can be exploited in order to facilitate the con-
solidation of user feedback. Moreover, we hypothesized that users influence the
market with their feedback and establish latent communities even when the
software is not open source.

4.3 Methodology

To collect qualitative and quantitative data which helps to test our proposition
and investigate the current practical situation, we conducted two exploratory
studies about user involvement with two different, complementary purposes.

First, we investigated how users and developers interact in a social environ-
ment, namely open source communities, where both user and community in-
volvement are high. The goal of this study was to understand how these two
groups communicate “in the wild”, in order to draw conclusions on how they
might be interweaved to increase software socialness in other, more controlled
situations. The open source software industry is often regarded as the most pop-
ular and successful implementation of the open innovation paradigm [282, 65],
where no boundaries between users and developers exist [237, 285]. Instead of
following a strict product roadmap, an open source project can be seen as a
genetic process: Source code (the genetic material) is transformed (mutated) by
developers, while the community (evolution) decides which changes are success-
ful and will survive [50]. Open source communities mainly rely on social media

59



Chapter 4 Grounded Theory on Continuous User Involvement

for their communication. Consequently, in the first part of constructing our
grounded theory, we examined blogs in four large open source communities in
an exploratory study. The results of this exploratory study have been published
in [221]. For the sake of brevity, we decided not to include the complete study
in this dissertation, but to summarize the obtained results (Section 4.4).

Second, we explored how users provide feedback in a more transactional, closed
source environment, namely application distribution platforms, which are one of
the most popular channels for users to provide feedback on software, as we have
seen in the last chapter. Such platforms allow users to rate and review their
applications. The resulting, publicly visible information can apply pressure on
software companies, but reacting to it typically requires high efforts. As our
goal is to facilitate developers’ work with user feedback, we had to analyze the
data for regularities which would allow for an automated or semi-automated
consolidation. Consequently, in the second part of the grounded theory, we
examined user feedback in one of the main application distribution platforms in
a second exploratory study (Section 4.5).

4.4 Exploratory Study on User Involvement in
Open Source Communities

Social media enable the creation and exchange of user-generated content [157].
Individuals can use them to interact with, share information with, and meet
other individuals presumably with similar interests, forming large data, knowl-
edge, and user bases. In recent years the number of users and use-cases of social
media has grown rapidly [272]. For example, Facebook recently announced that
it has over 1 billion active users – more than the whole population of the Amer-
icas and the Caribbean1. The usage of Facebook, Blogger & Co. is no longer
limited to private scenarios such as finding school friends, sharing photos, or
keeping a vacation diary. Professionals use more and more social media e.g. to
organize a conference, market a new product, or coordinate an open source
project.

The software engineering community has also recognized the potentials of so-
cial media to improve communication and collaboration in software projects [23].
For example, several studies have shown the role of Wikis for managing software
documentation and collaboration [183]. Other authors suggested the integration
of social media into development environments [123, 273, 278]. However, there
exists no framework on the use of social media in software engineering. This
study takes a step towards such a framework by exploring the role of blogs as a
popular social medium in open source communities.

1http://www.facebook.com/press/info.php?statistics

60



4.4 Exploratory Study on User Involvement in Open Source Communities

To investigate how open source communities currently use social media, we
divided the blogging ecosystem in active software developers and other stake-
holders (including the users). We were particularly interested in understanding
how and why these groups use blogs, and how their blogging activities are re-
lated to other project activities. From the results we drew conclusions on how
current communication means between developers and other stakeholders can
be improved (e.g. by revising software tools and processes), and how users and
other stakeholders can be stronger involved in the development lifecycle.

In the remainder of this section, we briefly introduce the research questions
(Section 4.4.1), present the applied research methods and the studied data (Sec-
tion 4.4.2), and summarize the results we have obtained (Section 4.4.3). For the
complete study, we refer the reader to [221].

4.4.1 Research Questions

The goal of this study was to understand how and why blogs are currently used
by users and developers in a software community. We focused on three aspects:
the actual usage of blogs in software projects, the content of these blogs, and
the integration of blogging activities into the development workflows.

RQ 3.(a) Blog usage describes how software development communities “blog”
(i.e. share information in blogs). For that, we analyzed the publishing frequency
as well as the structure of blog posts, answering the following questions:

• Publishing frequency: How often do community members blog?

• Post structure: What are typical elements of a blog post and how often
are they included or referenced?

RQ 3.(b) Blog content describes the information published in the blogs.
This includes identifying topics (i.e. semantic entities) and their frequencies. In
particular we answered the following questions:

• Topics : Which topics are discussed in blogs of development communities?

• Topic popularity : How popular are these topics (i.e. frequency distribution)
across different communities?

RQ 3.(c) Blog integration describes how blogging activities are integrated in
the development workflows. We examined usage patterns and content dependen-
cies between blogs, source code repositories, and release repositories, answering
the following questions:

• Publishing patterns: Are there particular patterns, which describe when
blogs are used in the communities? In particular:

61



Chapter 4 Grounded Theory on Continuous User Involvement

Table 4.1: Overview of research data

Eclipse GNOME PostgreSQL Python

# posts 10,333 18,323 3,385 18,660

# bloggers 328 342 112 405

# commits 239,659 252,831 30,745 45,116

# committers 467 2,294 34 178

# blogging committers 93 250 12 34

– Release dependency: When are blogs posted in relationship to the
software releases?

– Activity dependency: When are blogs posted in relationship to par-
ticular development activities?

• Published Information: Are there relationships between the work per-
formed and the information blogged? In particular:

– Content dependency: Are blog post topics and particular develop-
ment activities related?

– Time dependency: To which degree are work performed and informa-
tion blogged related in terms of time?

When answering these questions we distinguished between active developers
(committers) and other bloggers. This allowed us to compare the behavior of
developers and other stakeholders – including the users – in the studied com-
munities.

4.4.2 Research Method and Data

To analyze the usage of blogs we applied descriptive statistics (for frequency
calculation) and regular expressions (for analyzing the blog structure). We also
conducted statistical tests to exclude the hazard factors and report on the error
rates. To analyze the blog content and included information we used the Latent
Dirichlet Allocation (LDA) topic modeling technique [32]. When applied to blog
posts, this technique extracts keywords which belong together and groups them
as topics. Finally, to study the integration aspect we ordered commit messages
and blog posts as well as commit messages and releases by time and investigated
the resulting stream of events. Thereby we looked for patterns and regularities
using Sequential Pattern Mining [5].

Table 4.1 shows an overview of the studied data. We explored the behavior
of over 1,100 bloggers in four large open source communities: Eclipse, GNOME,
PostgreSQL, and Python. To this end, we analyzed over 50,000 blog posts and
more than 568,000 commit messages.

62



4.4 Exploratory Study on User Involvement in Open Source Communities

4.4.3 Results

In all studied open source communities we observed regular and frequent blog-
ging activities since several years and across many releases. This is not sur-
prising, as blogs became one of the most popular social media for sharing and
accessing software engineering knowledge in the last years [226]. While individ-
ual members only blog occasionally, the community as a whole constantly shares
information and produces an average of up to six blog posts per day. These posts
are written equally by committers and other community members.

Our results show that the studied communities use blogs as documentation
tool to share knowledge and experiences, and to socialize and maintain com-
munity structures. A major finding of this study is that committers and other
members blog on a high level of abstraction, e.g. frequently about features and
domain concepts. At first glance this is surprising, as we expected developers
to blog about models, technical abstractions, and source code related concepts.
However, the public, social, and rather informal nature of blogs can be one of
the reasons behind this information granularity. Blogs enable developers to doc-
ument features, dependencies, known issues, and qualities of new releases in an
informal and time-ordered way and to a broad audience. Studies showed that
developers describe their work in short but regular commit messages [180]. Blog
posts on the other hand are less frequent than commit messages, but comprise
significantly more content. They rarely include source code but frequently high-
level information and images. Therefore, blog posts seem to have rather the
character of short documentations and tutorials.

Unexpectedly, we found that non-committers blog about more technical top-
ics than committers in all studied communities. We think that this is due to
the framework nature of the studied projects. Non-committers use Eclipse,
GNOME, PostgreSQL and Python as infrastructure for their own projects. In
their blogs, they frequently reflect their technical experiences, share code exam-
ples, patterns to solve particular engineering tasks, and howtos. This shows the
importance of social media for making end users an integral part of software
projects, enabling them to share their user experience and helping to create and
maintain project knowledge [182].

Our results show that committers and other stakeholders communicate bi-
directionally through social media. Committers provide development related
information to other stakeholders, while the latter report about their experi-
ences with using the software. Blog posts by committers frequently contain
information about recent activities described shortly before in previous commit
messages. Specifically, we found that developers post more often after corrective
engineering than after forward engineering or re-engineering tasks. One silent
implication of this finding is that bug fixes represent important information
which should be shared with all stakeholders in a software community. Commu-
nicating these corrective actions to the community might have two implications.

63



Chapter 4 Grounded Theory on Continuous User Involvement

First, developers publicly show their personal contributions and merits – an im-
portant social and motivational factor. Second, solved issues – which might have
been reported by end users – indicate a healthy project and a healthy, social
relationship between developers and users.

Likewise, blog posts about release announces and release plans make the com-
munity aware of the overall project status. We found that in particular non-
committers publish most blog posts shortly after a new release, reporting about
their experiences with the software. Again, this indicates that non-committers,
including the actual end users, are continuously involved throughout the soft-
ware lifecycle.

4.5 Exploratory Study on User Feedback in
Application Distribution Platforms

Application distribution platforms such as Apple’s AppStore2, Google’s Play3,
and Microsoft’s Windows Phone Store4 allow users to buy and deploy software
applications with one click, while completely hiding the complexity of money
transfer and liability for both users and developers. As a consequence, they
are growing at high speed. As of September 2012, over 700,000 applications
are available in the Apple AppStore, more than 500,000 in Google Play, and
over 100,000 in the Windows Phone Store. The astronomic download numbers
(around 2 billion per month in the Apple AppStore) make these platforms very
attractive for developers.

The main use case of application distribution platforms is to allow users to
download and install software. But in addition, they allow users to rate and
review the offered applications. Users who have bought an application can rate
it by assigning it a number of stars and publish a review about the software.
Both ratings and reviews are public and visible to all users – and all developers.

The original purpose of this rating and review system is twofold. First, it
ensures a user-oriented quality among the applications, since applications with
higher ratings rank higher in so-called “top lists”, which in turn increase the
applications’ publicity and thus its download numbers. This viral marketing is
one of the main success principles of application distribution platforms. Second,
it enables a user-based recommendation of applications, as it is commonly used
in traditional shopping platforms, such as Amazon5. Since the providers of
application distribution platforms benefit from the generated revenue, they are
interested to sell as many applications as possible. Application recommendation
is consequently the second main success principle of these platforms.

2https://itunes.apple.com/us/genre/ios/id36?mt=8
3https://play.google.com/store/apps
4http://www.windowsphone.com/en-us/store
5http://amazon.com

64



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

In Chapter 3 we described how users “abuse” the rating and reviewing feature
to provide information about applications to its developers. Specifically, they
seem to use this channel to publish error reports, feature requests, and other
feedback on existing application features. While we found that this user feedback
is important to developers, they cannot benefit from it in practice, since its
analysis has to be done manually and therefore requires high efforts. The overall
goal of this dissertation is to facilitate this part of developers’ work by providing
tool support for the consolidation of user feedback. The aim of this study
was therefore to explore how users provide feedback in application distribution
platforms and to analyze the data for regularities which would allow for an
automated or semi-automated consolidation.

The remainder of the study is structured as follows. Section 4.5.1 introduces
the research questions, research data, and methodology used. Section 4.5.2
summarizes our findings on the usage of feedback, the information included,
and the impact of feedback on software market and user communities. Section
4.5.3 discusses the limitations of our study. Section 4.5.4 surveys related work.

4.5.1 Study Setting

We first formulate the questions that this study will answer. Then, we describe
the overall method we used to collect and analyze the data. Finally, we present
the actual data sets collected to perform our analysis.

4.5.1.1 Research Questions

The goal of this study was to understand how and why users give feedback
in application distribution platforms. We focused on three aspects: the actual
usage of feedback by the end users, the content of this feedback, and the impact
of user feedback on the user communities and software companies.

RQ 4.(a) Feedback usage describes how software users provide feedback.
For that, we analyzed the feedback frequency as well as the meta-data of user
feedback, answering the following questions:

• Feedback frequency : How often do users provide feedback?

• Feedback meta-data: On average, how long is user feedback, how are app
ratings distributed, and how helpful is feedback for other users?

RQ 4.(b) Feedback content describes the information provided in the feed-
back. This includes identifying semantic entities and their frequencies. In par-
ticular we answer the following questions:

• Feedback type: Which different types of feedback do users provide?

65



Chapter 4 Grounded Theory on Continuous User Involvement

!"#$%&'$(()%*$+,&')%-#'

.*/$(0'/01%02-'

.#$+-+*$)'3&$)4-%-'

5,&#0&#'3&$)4-%-'6'
3--,*%$+,&'7%&%&8'

9%&:'2%#;'$(('<0#$'=$#$'

!""#$%&'()*+

,-.$-/*+

,00+1--2+

!"#"$%&'("&")*+$%,"-'$

3*&4-+

5()6-)6+

!"#"$.+"/0-1-$%,"-'$

!""#$%&'()+&)2+7-.$-/+2&6&8&*-+

.#$+-+*$)'3&$)4-%-'

9:"&%6+

Figure 4.2: Research method.

• Feedback patterns: Are there recurring patterns in the feedback?

RQ 4.(c) Feedback impact describes how user feedback influences (i) the
rating of an application and (ii) the user community. We examined the impact
of user feedback answering the following questions:

• Market impact : Are there regularities in which user feedback accounts for
a specific rating? In particular:

– Feedback type and rating: Are specific feedback types related to par-
ticular ratings?

– Feedback patterns and rating: Do particular feedback patterns cor-
respond to specific ratings?

• Community impact : Are there any factors that influence the helpfulness
of user feedback for other users? In particular:

– Feedback helpfulness: Is feedback with a particular length more help-
ful than others? Are specific feedback types related to the perceived
helpfulness?

– Rating helpfulness: Are specific ratings more helpful than others?

When answering these questions we distinguish between paid and free appli-
cations, which allows us to decide if the price of an application has an impact
on the studied research questions. This is important to understand if and how
the application price influences user feedback and ratings.

4.5.1.2 Research Method

Our research method consisted of two phases: a data preparation and a data
analysis phase, as depicted in Figure 4.2.

66



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

4.5.1.2.1 Data Preparation Phase In the data preparation phase, we col-
lected the data and created a database from it. We started by investigating
the three biggest application distribution platforms and the available data: Ap-
ple’s AppStore, Google’s Play, and Microsoft’s Windows Phone Store. All three
include comparable data, which we are interested in: information about applica-
tions and associated reviews written by users together with a rating. We decided
for Apple’s AppStore because of two reasons. First, we had prior experience with
the technology and applications. Second, we found a possibility to receive the
data automatically. In the AppStore, applications belong to one of 22 disjoint
categories6, which should help users to find applications more quickly. Further,
applications – called “apps” – are distinguished by their price in free apps and
paid apps. Because of these classifications, we decided to draw a stratified sam-
ple of the data, including an equal number of free and paid applications for each
category.

On September 16, 2012, we queried a list of the top 25 free and paid applica-
tions in each category utilizing an RSS feed generator provided by Apple7. This
list includes the most downloaded applications and is updated hourly. Next, we
parsed the list to extract the identifiers of all included applications. We then
used an open source scraping tool8, which we had modified in advance for our
purpose, to query the list of reviews by iterating through all application iden-
tifiers. As last step in the data preparation phase, we linked each application’s
meta data such as application name, release date, price etc. with the obtained
list of reviews and inserted the result into a MySQL database.

4.5.1.2.2 Data Analysis Phase The data analysis phase consisted of three
steps, which answer the usage, content, and impact question, respectively. To
analyze the feedback usage we applied descriptive statistics. We also conducted
statistical tests to exclude hazard factors and report on the error rates. To ex-
plore the feedback content we performed a manual content analysis of a random
sample of our data set (for finding included topics) and applied an association
mining method (for identifying latent patterns). Finally, to study the impact
aspect, we combined feedback meta-data with content and again employed a
statistical analysis of the resulting data. We detail on each of these analysis
steps in the corresponding result section.

4.5.1.3 Research Data

Table 4.2 shows an overview of our data set. In total we obtained 1,126,453
reviews from 1,100 applications (550 free, 550 paid). In the AppStore reviews

6“Newsstand” is rather a tag than a real category, since apps inside it belong to other cate-
gories as well. Consequently, we did not consider it to avoid duplicates in our data.

7http://itunes.apple.com/rss/
8https://github.com/oklahomaok/AppStoreReview

67



Chapter 4 Grounded Theory on Continuous User Involvement

Table 4.2: Overview of user feedback data set by categories. N = 1126453.

# app category # feedback free apps # feedback paid apps mean price max price

1 Books 23,962 8,641 2.43 9.99

2 Business 35,265 23,997 4.11 16.99

3 Catalogs 9,517 5,725 1.35 4.99

4 Education 16,628 16,577 1.99 3.99

5 Entertainment 45,761 38,201 1.47 4.99

6 Finance 36,182 15,259 2.99 14.99

7 Food & Drink 19,066 8,318 2.27 9.99

8 Games 38,923 43,602 1.43 6.99

9 Health & Fitness 32,845 29,657 2.39 7.99

10 Lifestyle 39,954 12,607 1.51 4.99

11 Medical 17,203 4,160 2.39 5.99

12 Music 42,001 32,218 2.91 7.99

13 Navigation 15,961 10,528 5.35 49.99

14 News 28,041 19,822 2.07 4.99

15 Photo & Video 37,786 31,770 1.67 4.99

16 Productivity 37,426 32,695 3.15 9.99

17 Reference 28,269 16,393 1.91 4.99

18 Social Networking 51,899 26,691 1.59 3.99

19 Sports 22,374 7,173 3.55 29.99

20 Travel 24,350 10,939 2.91 9.99

21 Utilities 46,984 45,021 1.51 3.99

22 Weather 20,709 15,353 2.87 9.99

⌃=671,106 ⌃=455,347 Ø=2.27 max=49.99

68



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

are reset every time a new version of an application is released. Therefore, the
reviews in our data set were exclusively issued after the last release of the asso-
ciated application. Less than half of the reviews (518,041 or 45.99%) specified
the application version the reviewing user’s feedback applied to. We could not
explain this clearly, but we hypothesize that users might be able to enter feed-
back via a browser or via the AppStore software. The latter has access to the
currently installed version.

Similarly, some reviews did not explicitly specify the date the review was
published. But since we obtained the feedback in the order it had appeared
online, we could compensate for this by investigating the date of the reviews
that were published directly before and after. Since the feedback date does only
include the day, we were able to obtain the real values. The oldest feedback was
entered on 10 July 2008. Our data set therefore spans more than 4 years.

Most reviews for free apps were written in the category “Social Networking”
(51,889 – 7.73%), least in the category “Catalogs” (9,517 – 1.42%). Most paid
apps reviews in our data set belong to the category “Utilities” (45,021 – 9.89%),
least reviews were published in the category “Medical” (4,160 – 0.91%). The most
expensive applications on average belong to the category “Navigation” ($5.35
mean), while applications in the category “Catalogs” are the most economic
on average ($1.35 mean). Overall, the average paid application in our data
set has a price of $2.27, while the maximum price is $49.99 and occurs in the
category “Navigation”. The average application price across our complete data
set, i.e. including free apps, is $0.92.

4.5.2 Results

4.5.2.1 Feedback Usage

4.5.2.1.1 Feedback Frequency Our data contains 1,126,453 reviews from
918,433 distinct reviewers, making around 1.23 reviews per reviewer. Of these
reviews, 671,106 apply to free apps, while 455,347 are written for paid apps.
The difference between the resulting average (1220.19 reviews per free app and
827.90 reviews per paid app) is significant in our data set, so that we conclude
that in total more feedback is written for free apps than for paid apps (two-
sample t-test, p<0.001, CI=0.99). Most probably the difference results from
the larger user number of free applications. In our data set we counted 568,599
distinct reviewers for free apps and 389,563 distinct authors of reviews for paid
apps. Consequently, the user ratio of free to paid apps (1.46:1) matches quite
well the review ratio of free to paid apps (1.47:1).

We first studied the number of reviews by individual reviewer. We found that
84,567 reviews (7.51%) were made by anonymous reviewers using the username
“Anonymous”. In addition, we observed several other anonymous usernames,
such as “????” (353 reviews), “???” (330 reviews), and so forth. In total, 57 of

69



Chapter 4 Grounded Theory on Continuous User Involvement

1 100 10000

0e
+
00

4e
+
05

8e
+
05

# of reviews per user (log scale)

# 
ob

se
rv

at
io

ns

Figure 4.3: Distribution of reviews per user.

the top 1,000 users in our data are anonymous in this way, leading to a total
of 87,282 anonymous reviews (7,75%). The remaining reviews are authored by
users with non-anonymous usernames, even if it is questionable if and how they
really identify a user. Overall, the issued reviews per user seem to follow a
power-law distribution, as illustrated in Figure 4.3. 826,874 (90.03%) of the
reviewers in our data set have written only 1 feedback. In contrast, only 1,183
(0.13%) account for more than 5 reviews.

On average users in our data set have provided 22.09 reviews per day per
app. Again, more users provide feedback for free apps than for paid software.
Concretely, we found 36.87 reviews per day for free applications, while only
7.18 daily reviews were issued for paid applications. Again, this difference is
significant in our data (two-sample t-test, p<0.001). Figure 4.4 illustrates how
the amount of daily feedback is distributed across different application prices.

Application users publish most feedback per day in the category “Games”
(median 31.24), followed by “Social Networking” (median 8.82) and “Utilities”
(median 8.75). We use medians rather than means to measure average daily
feedback, since the distributions are positively skewed, as depicted in Figure
4.5. Least feedback is provided for applications in the categories “Catalogs”
(median 0.30), “Medical” (median 0.34), and “Books” (median 0.53).

On application-granularity level, most feedback was given for the free applica-
tion “Facebook”, which ranks 6th in the category “Social Networking”. For this
application, users published 4,275 reviews in just one single day. The average
of these ratings is 3.95 stars. The least feedback in our data set was provided
for the application “Packers Radio & Live Scores” that ranks number 16 in the
category “Sports” and costs $0.99. In this case, 2 users provided feedback in 303
days. Both of them gave 5 stars.

To understand if and how user feedback depends on time, we investigated
users’ behavior after a new release. To this end, we first estimated for each
feedback how many days after the first feedback on this application it had been
provided. From these timespans, we calculated the distribution of the reviews

70



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

0

0.
99

1.
99

2.
99

3.
99

4.
99

5.
99

6.
99

7.
99

9.
99

14
.9
9

16
.9
9

29
.9
9

49
.9
9

0

10

20

30

40
# 

re
vi

ew
s

Figure 4.4: Daily feedback per app price.

B
oo
k

B
us
in
es
s

C
at
al
og
s

E
du
ca
tio
n

E
nt
er
ta
in
m
en
t

F
in
an
ce

F
oo

d 
&

 D
rin

k

G
am
es

H
ea

lth
 &

 F
itn

es
s

Li
fe
st
yl
e

M
ed
ic
al

M
us
ic

N
av
ig
at
io
n

N
ew
s

P
ho

to
 &

 V
id

eo

P
ro
du
ct
iv
ity

R
ef
er
en
ce

S
oc

ia
l N

et
w

or
ki

ng

S
po
rt
s

T
ra
ve
l

U
til
iti
es

W
ea
th
er

0

50

100

150

# 
re

vi
ew

s

Figure 4.5: Daily feedback per app category.

71



Chapter 4 Grounded Theory on Continuous User Involvement

Overall

days after first feedback

# 
fe

ed
ba

ck
s

0 500 1000 1500

0e
+
00

1e
+
05

2e
+
05

3e
+
05

4e
+
05

Free

days after first feedback

# 
fe

ed
ba

ck
s

0 500 1000 1500

0e
+
00

1e
+
05

2e
+
05

3e
+
05

4e
+
05

Paid

days after first feedback

# 
fe

ed
ba

ck
s

0 500 1000 1500

0
50
00
0

10
00
00

15
00
00

20
00
00

Figure 4.6: Relative distributions of feedback over time.

over time. As shown in Figure 4.6, users quickly give less feedback over time.
Although the distribution is not exponential (a Kolmogorov-Smirnov test re-
jected this hypothesis with p<0.001), users give most feedback in the first few
days after a release, leading to a long tail over time. This strongly suggests that
user feedback is triggered by new releases.

4.5.2.1.2 Feedback Meta-Data
We first studied the length of feedback in our data set. Overall, the feed-

back length ranges from 1 character to 6,000 characters in our data set. The
median feedback length across all applications is 61 characters (106.09 mean).
2,802 (0.25%) reviews comprise only exactly 1 character, while 6 app reviews
contain 6,000 characters. None of these very long texts contain usable informa-
tion. Rather, it seems that the corresponding users randomly typed characters
or repeated sequences of characters and white space to generate visual patterns.
863,951 (76.70%) of all feedback in our dataset are shorter than 140 characters,
which is the length of a Twitter message. 905,974 (80.43%) contain less charac-
ters than an SMS text message (160). Over 99% of the feedback contains less
than 675 characters, which corresponds to around a third of a printed page. We
therefore conclude that application feedback are mostly short messages, more
similar to a tweet than to other communication artifacts such as email.

As shown in Figure 4.7, feedback length seems to increase with application
price. Although we could not directly find a significant linear correlation be-
tween app price and feedback length, we were able to show a significant increase
in feedback length between lower-price and higher-price applications. To this
end, we divided our data into two disjunct sets. The lower-price set includes

72



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

0 0.99 2.99 4.99 6.99 9.99 16.99 49.99

0
20
0

40
0

60
0

80
0

10
00

Figure 4.7: Feedback length by application price.

0 1 2 3 4 5

0
10
0

20
0

30
0

40
0

50
0

Rating (#stars)

F
ee

db
ac

k 
le

ng
th

Figure 4.8: Feedback length and ratings.

applications with a price up to $6.99, while the higher-price set contains all
apps which are more expensive. A two-sample Wilcoxon rank sum test showed
that users write significantly longer feedback for higher-price than for lower-price
applications (p<0.001).

As shown in Figure 4.8, feedback length seems to be related to the rating in
stars. By using a series of two-sample Wilcoxon rank sum tests, we could show
the following relationships for the median length of feedback according to its
rating: m1 < m2 ^m2 > m3 ^m3 > m4 ^m4 > m5 ^m1 > m3 (p<0.001). Our
data set does not include enough samples of zero star ratings to make any as-
sumptions. But since usually only 1–5 star ratings are allowed, we might exclude
these reviews. We think that this result is quite interesting. One interpretation
is that users tend to say less the more they like an application – a sign that
there is less to improve. Conversely, it indicates that written feedback is mostly
used for improvement requests.

73



Chapter 4 Grounded Theory on Continuous User Involvement

Rating (stars)

F
re
qu
en
cy

0 1 2 3 4 5

0e
+
00

3e
+
05

6e
+
05

Figure 4.9: Frequency of different ratings.

Ratings in our data set are overall very positive, leading to an average rating
of 4.13 stars. 697,932 (61.96%) of the reviews contain a 5 star rating, 879,373
(78.07%) give at least 4 stars. Only 130,940 (11.62%) reviews rate the applica-
tion with 1 star – the lowest possible rating. Figure 4.9 shows an overview of
the underlying frequency distribution. We obtained our data set by querying
the top downloaded applications in each available category. Thus, although our
data sample contains a large number of low ratings (177,887 or 15.79% reviews
with less than 3 stars), we cannot exclude an influence of the applications’ rank
on the overall ratings (and obviously vice-versa). A �

2-test of independence
confirmed the hypothesis that rank and ratings are not independent in our data
(�2=2,661,333, p<0.001).

In the AppStore, users may give a quality indicator for existing feedback by
other users. They may do so by rating the “helpfulness” of a specific feedback.
In our dataset, only 67,143 (5.96%) reviews are rated by other users regarding
their helpfulness. From these, 38,519 (57.37%) are considered 100% helpful.
Only 19,118 (28.47%) rated reviews are rated useless by more than half of the
rating users. Interestingly, 16,671 (24.83%) are rated completely useless. This
means that the user community agrees in over 82% of the cases about their
opinion. To further investigate the distribution of helpfulness, we created the
corresponding density plot (see Figure 4.10). The result suggests a bimodal or
multimodal distribution, which we could confirm using Hartigans’ dip test [127]
(p<0.001). As it turns out, if feedback is rated, it is regarded either very helpful
or very useless by the user community.

4.5.2.2 Feedback Content

To investigate the content of user feedback in our data set, we employed an
iterative content analysis technique. To this end, we first drew a stratified
random sample of our data by randomly picking 12 reviews from each of the

74



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Helpfulness in percent, N = 67143, Bandwidth = 0.04164

D
en
si
ty

Figure 4.10: Density plot of feedback helpfulness as rated by other users.

22 application categories for both free and paid applications, leading to 528
reviews. Next, two researchers (including the author) independently from each
other coded the random sample to identify topics included in the feedback. Since
most feedback contained more than a single topic, we allowed the assignment of
multiple topics. We obtained two sets of topics, a set T1with 16 items and a set
T2 with 21 items. By discussing the identified topics, we discovered that T1 was
a strict subset of T2, but that T2 allowed more specific distinctions regarding
certain information entities. We therefore decided to take T2 as base for further
coding, with one modification: We removed the 4 least frequent topics, as they
had been found only in 1 or 2 reviews. The resulting 17 topics served as our
coding guidelines for the rest of the content analysis.

Before the final coding round, we doubled the random sample to 1,100 reviews.
This allows us to make predictions about our data set at the 95% confidence
level, accepting an error margin of 3%. Both researchers then coded this larger
sample, again independently from each other. Finally, we discussed feedback for
which the assigned codes did not match and decided together for a final code.

4.5.2.2.1 Feedback Type The final results are shown in Table 4.3. We found
that the most popular topic is “praise”, which denotes any kind of praising the
application under feedback. This topic is predominant in over 75% of the ana-
lyzed samples. The second most popular topic is “helpfulness”, which describes
a use case or situation where the application proved to be helpful to the user.
It is predominant in more than 20% of the feedback. Further the topics “fea-
ture information” as well as “shortcoming” are predominant in over 13% of the
analyzed feedback sample.

While reading the sample feedback, we made three interesting observations.
First, the quality of feedback in our random sample varies quite strongly. On
the one hand, there are app reviews with a high quality, which suggest interest-
ing new features and justify their suggestions profoundly. On the other hand,

75



Chapter 4 Grounded Theory on Continuous User Involvement

Table 4.3: Topics in user feedback. N = 1, 100.

# topic description frequency

t1 praise expresses appreciation 75.36%

t2 helpfulness scenario the app has proven helpful for 22.45%

t3 feature information concrete feature or user interface 14.45%

t4 shortcoming concrete aspect the user is not happy with 13.27%

t5 bug report bug report or crash report 10.00%

t6 feature request asks for missing feature 6.91%

t7 other app references a different app, e.g. for comparison 3.91%

t8 recommendation suggests acquisition 3.82%

t9 noise meaningless information 3.27%

t10 dissuasion advises against purchase 3.27%

t11 content request asks for missing content 2.91%

t12 promise expresses will to give better ratings under conditions 2.00%

t13 question asks how to use specific feature 1.27%

t14 improvement request requests improvement (e.g. because app is slow) 1.18%

t15 dispraise opposite of praise 1.18%

t16 other feedback references or answers other feedback 1.09%

t17 howto explains other users how to use application 0.91%

some feedback does not add any value to the numeric rating of the application.
Second, users tend to become insulting quickly. Especially when they have spent
money they seem to forgive the developers nothing. Feedback like “Fire the idiot
who designed this app!” is far from constructive and explains developers’ disen-
chantment with user feedback. Third, users seem to complain frequently about
removed or changed features. We see this as an indicator for users’ getting used
to specific workflows with an application. Changing an application in a way that
affects users’ workflows seems to be a source of dissatisfaction.

In order to estimate the diversity of information in user feedback, we calculated
the distribution of number of topics per feedback. Overall, 6 (0.55%) reviews
contained 5 topics, 22 (2.00%) reviews contained 4 topics, 3 topics were included
in 116 (10.55%) reviews, 2 topics in 427 (38.82%) reviews, while 528 (48.00%) of
the reviews contained only one topic. In other words, the majority of feedback
(52%) contains more than one topic.

To further interpret and compare the information included in feedback, we
grouped the resulting topics into the following themes:

1. Community. These topics represent community and social aspects. Specif-
ically, references to other feedback and other apps, questions to other users,
howtos explaining how to use the application, as well as recommendations
and dissuasions are included in this theme.

76



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

Table 4.4: User feedback topic categories. N = 1100.

category topics frequency

rating t1, t12, t15 856 (77.82%)

user experience t2, t3 359 (32.64%)

maintenance t4, t5, t6, t11, t14 340 (30.91%)

community t7, t8, t10, t13, t16, t17 146 (13.27%)

2. Maintenance. This theme captures topics related to the improvement of
an application. All requests – feature, content, and improvement requests –
as well as shortcomings and naturally bug reports belong to this theme.

3. Rating. This theme contains topics that are related to a judgement of
an application, particularly praise and dispraise, but also promise, which
expresses the user’s intention to change her judgement given certain im-
provements.

4. User experience. This theme comprises topics related to users’ descrip-
tions of the application in action. These are helpfulness, which captures
use cases where the application has proven helpful, as well as feature in-
formation, which includes descriptions of application features and user
interface.

Table 4.4 summarizes the identified themes together with the included topics,
and shows their frequency across the random sample. Frequency denotes the
number and percentage of feedback that contained at least one of the associated
topics.

In our random sample, “rating” is by far the most frequent theme with a fre-
quency of over 77%. This corresponds to the main intention behind application
distribution platforms after the distribution itself, which is giving other users
indicators for good applications and thus guaranteeing a high quality among the
applications. The second most frequent theme is “user experience” which is pre-
dominant in nearly one third of all feedback. We think that the high popularity
of this theme is interesting. It suggests that users tend to share their experiences
with other users, presumably to justify their statements about an application
such as ratings, recommendations, or dissuasion. The theme “maintenance” is
predominant in around 30% of all feedback. This suggests that despite the over-
all quite positive ratings, users often externalize requests for improvement. Last,
the theme “community” shows up in around 13% of the analyzed samples. We
think that this number is quite high, given the original purpose of the App-
Store as application distribution platform. It might suggest that users naturally
tend to form communities, i.e. to react to each other, ask questions, or publish
presumably helpful information.

77



Chapter 4 Grounded Theory on Continuous User Involvement

Table 4.5: Frequent topic patterns in user feedback. N = 1100.

# pattern support avg. rating

p1 {helpfulness, praise} 22.18% 4.86

p2 {feature information, praise} 14.18% 4.83

p3 {feature request, praise} 4.64% 4.37

p4 {helpfulness, feature information, praise} 4.27% 4.87
⇤p5 {helpfulness, feature information} 4.27% 4.87

p6 {praise, recommendation} 3.73% 4.90

p7 {other app, praise} 2.64% 4.79

p8 {praise, shortcoming} 2.64% 4.24

p9 {content request, praise} 2.27% 4.60

p10 {dissuasion, shortcoming} 1.82% 1.45

p11 {helpfulness, praise, recommendation} 1.73% 4.95
⇤p12 {helpfulness, recommendation} 1.73% 4.95

p13 {bug report, dissuasion} 1.27% 1.21

p14 {bug report, shortcoming} 1.27% 1.57

p15 {bug report, praise} 1.18% 4.23

p16 {feature information, praise, recommendation} 1.09% 4.83
⇤p17 {feature information, recommendation} 1.09% 4.83

p18 {improvement request, praise} 1.00% 4.18

p19 {feature information, other app, praise} 1.00% 4.91
⇤p20 {feature information, other app} 1.00% 4.91

4.5.2.2.2 Feedback Patterns We utilized the association mining algorithm
Eclat

9 by Zaki [295] to identify co-occurrences of topics in our data sample.
Association mining (or association rule mining) [4] is a data mining method for
discovering relationships between different variables based on their co-occurrence
in databases. It takes as input a database containing at least two different
variables as well as a parameter specifying the minimum support � for the
relationships to discover. The output of association mining methods are frequent
itemsets, i.e. sets of values which co-occur in at least � percent of the data.

Our goal was to find sets of topics which co-occur in our data set with a
higher frequency than others. Consequently, we built a database which contained
the topic codes for each feedback in our random sample. We ran the Eclat

algorithm with a minimum support of � = 0.01 and a minimum pattern length
of 2, which means that results should only include itemsets with at least 2 topics.

Table 4.5 shows the 20 patterns10 which we obtained with these thresholds.
The most frequent pattern is {helpfulness, praise}, which is present in more than

9Equivalence CLAss Transformation
10Patterns marked with an asterisk (⇤) are not closed, which means that there exists at least

one super-pattern that has the same support as the pattern.

78



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

20% of all feedback. It describes the usefulness of an application together with
a positive rating. A concrete example in our data set is “Great for uploading
receipts on the go. Easier than reconciling on the computer.” The second most
frequent pattern {feature information, praise}, which applies to over 14% of
our random sample is similar to the first, with the difference that it describes
more concretely a positive feature or functionality of an application. A concrete
example in our data set is “I love that this app takes less than ten seconds to
let you know where your battery life is!!! I love it.” The third pattern {feature
request, praise} is predominant in nearly 5% of our random sample. It illustrates
positive feedback which also includes a feature request. From such a pattern we
would expect a lower rating of the application than we would for instance from
the first pattern. To test this hypothesis, we investigate regularities between
feedback content and ratings in the following section.

4.5.2.3 Feedback Impact

4.5.2.3.1 Market Impact To study the market impact of feedback, we ex-
plored relationships between application ratings and feedback topics as well as
feedback patterns.

We first tested the independence of the identified topics and the final rating of
the application by the user with a number of �2-tests. The results show that the
topics “other app” (p=0.90), “other feedback ” (p=0.69), and “howto” (p=0.56)
are independent from the rating, while all others are not (p<0.05).

To further study the impact of specific feedback types on the application
rating, we calculated for each topic the distribution of the associated ratings as
well as the average rating across all feedback where it occurs. Table 4.6 illustrates
the results and relates them to the overall average rating of the feedback in
our random sample. The most positive topic is “recommendation”, followed
by “helpfulness” and “feature information”, while the most negative topic is
“dissuasion”, followed by “dispraise” and “bug report”.

The results suggest two interesting findings in the light of the previously iden-
tified feedback themes. First, it allows to order the maintenance topics according
to their impact on the user-specified rating as follows. Content requests (4.25
stars on average) are the least critical maintenance feedback. Their average
rating even lies above the overall average rating of the random sample. Im-
provement requests (3.92 stars on average) and feature requests (3.89 stars on
average) are more critical, but their average rating still lies above the theoretical
middle of 3 stars. Shortcomings (2.10 stars on average) have a definite nega-
tive impact on feedback rating. Bug reports (1.84 stars on average) are most
critical. Second, it suggests that user experience topics are mainly included in
positive reviews. In other words, users do not tend to include their experience
with an application in negative feedback. Given that such information is most
important for corrective maintenance activities and in particular to fix bugs (see

79



Chapter 4 Grounded Theory on Continuous User Involvement

Table 4.6: Distribution of ratings across topics in user feedback. N = 1100

–

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable1 star,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable
2 stars,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable

3 stars,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable

4 stars,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable

5 stars.

# topic avg. rating rating distribution

t8 recommendation 4.88

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t2 helpfulness 4.85
sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t3 feature information 4.81

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t17 howto 4.80

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t1 praise 4.78sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0
t11 content request 4.25

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

avg. sample rating 4.08

t14 improvement request 3.92

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t7 other app 3.91

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t6 feature request 3.89

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t9 noise 3.67

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t16 other feedback 3.67

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t13 question 2.86

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t12 promise 2.27

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t4 shortcoming 2.10

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t5 bug report 1.84

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t15 dispraise 1.69

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

t10 dissuasion 1.39

sPraise

sHelpfulness

sInformation.about.features

sShortcoming

sBug.report

sFeature.request

sRecommendation

sOther.app

sNoise

sDissuasion

sContent.request

sPromise

sOther.feedback

sQuestion

sDont.like

sImprovement.request

sHowto

0.0 0.2 0.4 0.6 0.8 1.0

80



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

Table 4.7: Top five topics per rating.

# 1 star (N = 138) 2 stars (N = 56) 3 stars (N = 58) 4 stars (N = 166) 5 stars (N = 682)

1 shortcoming

(50.00%)

shortcoming

(55.36%)

shortcoming

(31.03%)

praise (92.77%) praise (97.07%)

2 bug report

(46.38%)

bug report

(33.93%)

bug report

(22.41%)

helpfulness

(18.67%)

helpfulness

(31.23%)

3 dissuasion

(18.84%)

dissuasion

(12.50%)

feature request

(22.41%)

feature request

(18.07%)

feature inform.

(19.21%)

4 promise (7.25%) feature request

(7.14%)

praise (20.69%) feature inform.

(15.66%)

recommendation

(5.43%)

5 other app (5.07%) promise (5.36%) noise (12.07%) shortcoming

(10.84%)

feature request

(3.67%)

e.g. [298]), this finding indicates that user feedback in this form will unlikely
help developers to improve their applications.

To break the impact of topics on ratings further down, we calculated the top
five topics per rating. Table 4.7 shows the results which confirm the two findings.
Shortcomings, bug reports, and feature requests have high influence on negative
ratings, while helpfulness and feature information have high impact in positive
feedback.

Next, we investigated the relationship between feedback patterns and specific
ratings. To this end, we calculated the average rating for each of the identified
patterns. The results are included in Table 4.5 on page 78. As it turns out,
the average ratings vary largely across the different patterns. The most positive
(closed) pattern is {helpfulness, praise, recommendation}11, which has an aver-
age rating of 4.95 stars. As we had hypothesized, the pattern {feature request,
praise} has a lower average rating (4.37 stars). The pattern {bug report, dis-
suasion} accounts for the lowest average rating (1.21 stars), which corresponds
to the negative message transmitted by reporting a bug and dissuading other
users from buying the application.

4.5.2.3.2 Community Impact To study the impact of feedback on the user
community, we investigate relations between feedback helpfulness and feedback
length, content, as well as rating.

At first glance, we could not observe any linear or polynomial correlation be-
tween the feedback length and its helpfulness for other users. However, a �

2-test
showed that feedback length and helpfulness rated by other users are statisti-
cally dependent (�2=2043547, p<0.001). To further study this phenomenon,
we split feedback into three groups according to its helpfulness. Low helpful-
ness includes feedback rated helpful only by up to 33% of the users who rated
11{helpfulness, recommendation} is a sub-pattern with equal support.

81



Chapter 4 Grounded Theory on Continuous User Involvement

low medium high

0
10
0

20
0

30
0

40
0

50
0

helpfulness

fe
ed

ba
ck

 le
ng

th

Figure 4.11: Helpfulness and feedback length. N = 67143.

it. Medium helpfulness indicates that 33–66% of the users who rated the feed-
back found it helpful. High helpfulness includes feedback considered helpful
by most, i.e. more than 66%, of the users who rated it. Figure 4.11 shows
how feedback length is distributed across these three categories. By using a
series of two-sample Wilcoxon rank sum tests, we could show the following
relationships for the median length of feedback according to its helpfulness:
m

low

< m

medium

> m

high

^ m

low

< m

high

(p<0.001). This result means that
feedback with low helpfulness is the shortest, while feedback with medium help-
fulness is the longest in our data set. When going beyond the descriptive level,
the significance of the length difference between low and high helpfulness feed-
back is open to dispute, as the median lengths of these categories differ only in 7
characters (m

low

= 114,m

medium

= 144,m

high

= 121). In contrast, the difference
to feedback with medium helpfulness lies between 23 (19.01%) and 30 (26.32%)
characters.

What is remarkable, however, is the fact that all feedback whose helpfulness
has been rated is significantly longer than other feedback. The 67,143 reviews
which have been rated in our data set have a median length of 121 characters,
while the median length of the remaining 1,059,310 reviews is 58 characters,
which is less than half. This difference is significant in our data set (two-sample
Wilcoxon rank sum test, p<0.001). This result suggests that longer feedback is
more likely to be rated by other users. The reason might be that longer feedback
contains more information to identify with or to dislike.

Next, we studied how feedback helpfulness and feedback content are related.
Unfortunately only 74 (6.73%) reviews of the random sample which we had used

82



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

Table 4.8: Helpfulness of topics in user feedback. N = 74.

# topic avg. helpfulness N

t6 feature request 90.33% 7

t3 feature information 86.36% 11

t1 praise 83.93% 51

t16 other feedback 83.33% 3

t2 helpfulness 81.50% 18

t11 content request 75.00% 4

t14 improvement request 70.83% 4

t7 other app 67.33% 7

t17 howto 65.14% 5

t4 shortcoming 63.18% 13

t5 bug report 53.47% 14

t10 dissuasion 0.00% 1

t12 promise 0.00% 2

t8 recommendation 0.00% 1

to explore feedback topics, have been rated according to their helpfulness. This
number does not allow us to generalize the relation between topics and helpful-
ness. Nevertheless, to catch a glimpse of possible relationships, we calculated
the average helpfulness per topic for this set. As shown in Table 4.8, feature
requests, feature information, and praise are the topics included in the most
helpful feedback, while recommendation, promise, and dissuasion are included
in the least helpful feedback.

Last, we investigated relationships between feedback rating12 and helpfulness.
A �

2-test showed that these variables are statistically dependent in our data
set (�2=11952.97, p<0.001). To further analyze their relation, we calculated
the average helpfulness per feedback rating. Figure 4.12 shows the result in
the form of a sequence of violin plots, one for each rating. Violin plots deliver
a similar message as box plots, but also illustrate the probability density of
the underlying data. The mean helpfulness is marked with a red line for each
rating. By using a series of two-sample t-tests, we could show the following
significant relationships for the mean feedback helpfulness according to its rating:
m1 < m2 < m3 < m4 < m5 (p<0.001).

This result means that feedback which rates the application better, is consid-
ered more helpful by other users. One interpretation of this result might lie in
the main use case of the AppStore, which is to allow users to find good applica-
tions. We think that users browse existing reviews in order to understand if an
application is perceived to have a high quality by the user community. In this
case, their risk of buying a pig in a poke is quite low. Therefore, users might
12We excluded the six 0-star ratings from our data set.

83



Chapter 4 Grounded Theory on Continuous User Involvement

1 2 3 4 5

0.
0

0.
5

1.
0

N=17334 N=4976 N=4936 N=7716 N=32177

rating (#stars)

he
lp

fu
ln

es
s 

in
 p

er
ce

nt

Figure 4.12: Feedback helpfulness and rating. N = 67139.

consider better reviews, which typically describe application features and use
cases as we found out, as better decision support, and consequently rate them
more helpful. On the contrary, it is hard to imagine that users will take the
time to rate feedback as helpful which gives the application a low rating. We
think that in this case users will rather leave the download area and browse for
an alternative.

4.5.3 Results Validity

4.5.3.1 External validity

Although our study was neither designed to be generalizable nor representative
for all application distribution platforms, we think that the results have a high
degree of generalizability, in particular for the two remaining big and comparable
application distribution platforms Google Play and Microsoft Windows Phone
Store. We purposefully decided to study only the Apple AppStore since we had
prior experience with the technology and could access the data. At the design
time of the study, we preferred a profound hypothesis-generating exploration of
one platform over the generalizability to other platforms, in order to provide a
starting point for understanding the contained user feedback, its usage, and the
impact on market and user community.

Although the entire population is unknown, we think that our results are
representative for user feedback the AppStore due to the following reasons.

84



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

• Our dataset includes all user feedback from the 1,100 most downloaded
applications. It covers feedback from over 4 years.

• We conducted statistical tests to check the statistical significance of our
results and exclude hazard factors.

• We got similar results using different analysis methods (e.g. descriptive
statistics and content analysis).

• Some of our findings confirm other research results.

Nevertheless, there are three limitations which should be considered when inter-
preting the results.

First, we obtained our data set by scraping user feedback from the AppStore
based on a list of the most downloaded applications. This might have affected
the resulting data set as relationships between download numbers and other
variables, such as in particular the ratings, cannot be excluded. But since our
data sample still contains a large number of low ratings (177,887 or 15.79%
reviews with less than 3 stars), we are confident with our results. Specifically,
our study does not answer questions on absolute numbers within the population
such as the overall average rating of feedback. On the contrary, we are interested
in how ratings relate to other variables like content and helpfulness, what can
be answered with our data sample.

Second, in order to explore topics contained in user feedback, we extracted a
smaller sample of 1,100 reviews from our data set, since it was not feasible to
perform a manual analysis of the complete data set. Consequently, the statistical
evidence is less strong than for the complete data set. We tried to limit this
threat in three ways. First, we chose a sample size which allows us to make
predictions about our data set at the 95% confidence level, accepting an error
margin of 3%. Second, we selected a stratified random sampling strategy, which
guarantees that the resulting sample equally considers applications in different
categories and with different prices. Third, two researchers analyzed the content
independently in order to exclude any hazard factors that would further reduce
confidence.

Third, to relate feedback helpfulness and content we could rely only on a
very small number of reviews. Although we explicitly avoided any generaliza-
tion of the obtained results, other results such as relations between ratings and
helpfulness indirectly confirm them, what increases our confidence. However,
we encourage other researchers to replicate our study and to purposefully select
feedback which is rated regarding its helpfulness to perform the content analysis.

4.5.3.2 Construct and Internal Validity

We made the following simplifying assumptions during our analysis, which might
partly limit the construct and internal validity of the results:

85



Chapter 4 Grounded Theory on Continuous User Involvement

• Some reviews did not explicitly specify the publishing date, so that we
needed to interpolate these values. Since we obtained the feedback in the
order it had appeared online, we could compensate for the missing values
by investigating the date of the reviews that were published directly before
and after. We are confident that this does not influence the resulting data,
since feedback date does only include the day and the data gap was never
larger than 1 day. In particular, this algorithm never changes the order of
feedback.

• To analyze feedback content, we relied on manual analysis. The results
are subject to experimenter bias. To reduce this risk, two researchers
conducted pair analysis independently from each other. We iterated this
activity by refining the rating criteria to improve the inter-raters agree-
ment. We only reported on results where the rates of inter-rater agreement
were over 90%.

4.5.4 Related Work

Application distribution platforms are a recent phenomenon. Nevertheless, there
are already a couple of studies about application distribution platforms.

Chen and Liu [64] present a preliminary study on the popularity of applica-
tions in the AppStore. They found that the top ranked paid applications are not
necessarily closely correlated with customer ratings, what is confirmed by our
study. On the contrary, Harman et al. [126] mined the Blackberry app store for
technical, customer, and business aspects of applications. The authors found a
strong correlation between an application’s ratings and its download numbers,
while no correlation seems to be present between price and rating as well as price
and download numbers. While we found that application ratings and ranks are
not statistically independent in our data set, we were not able to show a corre-
lation. Instead, we described relationships between price and feedback length,
and showed that users write more feedback for higher-price applications.

Zhou et al. [296] study several third-party marketplaces for Android to in-
vestigate the phenomenon of repackaged applications. The authors found that
developers frequently repackage legitimate apps from the original Android store
to distribute them on third-party marketplaces. Zhou et al. showed that as many
as 5 to 13% of the apps hosted on third-party marketplaces are repackaged and
that the main use of repackaging is to replace existing in-app advertisements
or embed additional ones to “steal” or re-route advertisement revenues, which
illustrates the increasing importance of application distribution platforms as
business models. Yamakami [293] profounds the analysis of application distri-
bution platforms from the business point of view. The author presents the major
underlying business models and key success factors. Specifically, Yamakami il-
lustrates that viral marketing depends on the fact that users talk about their

86



4.5 Exploratory Study on User Feedback in Application Distribution Platforms

application experience in both the application distribution platforms and their
social networks. Our study confirms this finding and additionally shows that
the descriptions of user experience are typically missing in negative reviews.

Chandy and Gu [61] aim at classifying spam in the AppStore, in the light
of recent bogus reviews. Such reviews can deceive users to download spam
apps or to ignore apps which are victims of negative review spam. The authors
present a latent class model which is able to classify apps, developers, users,
and reviews into normal and malicious categories. Our study confirms that
reviews have an impact on the market and the user community. Moreover, it
confirms the importance of being in the top lists, since top downloaded apps are
not necessarily rated better in the AppStore. However, research is working on
putting things right. Researchers like Hong et al. [139] work on the automatic
classification of reviews that allows to automatically distinguish helpful and
useless reviews.

4.5.5 Summary

We observed that users frequently and continuously provide feedback in appli-
cation distribution platforms. While individual users write only occasionally,
the user community as a whole constantly produces dozens of reviews per day
and application. Not surprisingly, we found that free applications reach more
users and, as a consequence, obtain more feedback than paid ones. But inde-
pendently from the application price, our results show that most feedback is
provided shortly after new releases, with the frequency decreasing quickly over
time. One interpretation of this behavior is that users take a new release as
occasion for checking if an application meets their expectations, for instance be-
cause they were unhappy before. This implies that they expect an appropriate
application quality and functionality, and further that they are willing to let
developers know if the application fulfills these requirements.

We found that application reviews are generally brief messages – similar to
tweets. Interestingly, users tend to write more feedback for higher-price than
for lower-price applications, which might indicate that a higher price represents
an incentive for users to get more involved. At the same time it could indicate
that more expensive applications include more complex features, so that users
need to write more to express their concerns. Moreover, feedback length seems
to be related to ratings, as we found that users tend to write shorter feedback
the more they like an application. One possible interpretation of this result is
that less feedback means that there is less to improve, which would imply that
information contained in user feedback mainly addresses shortcomings.

In spite of its briefness, user feedback typically contains multiple topics about
software maintenance, the user community, application ratings, and user experi-
ence. An important finding which confirms our results described in Chapter 3 is
that users often communicate maintenance relevant shortcomings to developers

87



Chapter 4 Grounded Theory on Continuous User Involvement

and request improvements and additional features. In addition, most feedback
content includes ratings in natural language, but users also frequently share
their experience with the application. We found that these two themes occur
particularly often together, which indicates that users tend to give reasons for
their ratings. One implication of this finding is that users are aware of the rating
potential and willing to provide helpful explanations to the application develop-
ers. Indeed, our study confirms that feedback content has a real impact on the
market, since more positive messages usually also lead to better application rat-
ings and vice versa. Given that in particular bug reports and shortcomings are
market critical feedback, it is unfortunate that user experience is often missing
in such negative reviews, because it reduces the likeliness that developers will
be able to improve their applications from this feedback alone [298].

We found that feedback quality varies widely, from helpful messages for other
users and developers to insulting offenses, for instance when formerly beloved
features were removed in a new release. In general, positive feedback is consid-
ered more helpful by the user community. This can be explained by the main
use case of application distribution platforms which is to support users in find-
ing good applications. Likewise, longer feedback is more likely to be regarded
helpful by other users, probably because the possibility to contain helpful in-
formation is generally higher in longer text. An important finding is that the
community typically agrees about the helpfulness of the provided feedback. This
justifies the hypothesis that user communities are capable of aggregating helpful
feedback.

4.6 Summary

The studies we have described in this chapter show that users are willing and
able to provide helpful feedback to developers when they are convinced that it
improves the software they use. But we also identified serious shortcomings in
the current feedback channels which prevent the benefits of a more thorough
user-developer communication.

• In open source communities boundaries between users and developers are
low – if they exist at all. Social media which allow both users and de-
velopers equally to express their opinions, seem to help dissolving such
boundaries, as we did not discover any major and significant difference
between developers’ and other stakeholders’ blogging habits. Both groups
frequently rely on social media to publish project-related information on a
similar level of abstraction and formality. Also, both discuss about simi-
lar topics such as requirements, implementation, and community aspects.
Developers on the one hand report about their recent development activi-
ties to communicate their project work to a broad audience, including the
users. On the other hand, users and other stakeholders have their blogging

88



4.6 Summary

peak time shortly after new versions are released and report about their
experiences with the software.

• Commercially used user feedback channels, such as application distribu-
tion platforms only allow for transactional communication which prevents
otherwise emerging benefits. Similar as in open source communities, users
frequently provide feedback in particular shortly after new releases, but
their feedback is much shorter than blog posts and its quality tends to
be lower. Users often include maintenance relevant shortcomings in their
feedback and request improvements and additional features. They also
share their experiences with the application, but typically only in posi-
tive feedback, what reduces the likeliness that developers will be able to
improve applications only from such feedback.

Based on these results, we include the following four major factors for successful
continuous user involvement during software evolution in our grounded theory:

1. Users should be personally involved, i.e. their feedback should represent
their personal opinion, as it does in social media. This could prevent un-
qualified content, allows developers to contact a specific user, and enables
other users to take part and comment.

2. Communication between users and developers should be bidirectional as in
open source communities. This allows developers to directly react to users,
which is not possible currently. Developers need to be able to provide users
with clarifications and to ask for clarifications and missing information
themselves.

3. User communities should be fostered systematically with the goal to ob-
tain a measure for feedback impact. The emerging synergies between the
opinions of different users should lead to more perspectives, focused, and
mature input.

4. User experience should be captured automatically, since users tend to omit
this from negative feedback – where it is most needed. Specifically, feed-
back is most useful if the use context and the use history are known to the
developers.

In Chapter 5 we will introduce a domain-independent model for continuous user
involvement which satisfies these properties. Since we found that users do not
tend to include their experience with an application in negative feedback, we
follow a proactive approach. We also describe in detail how this approach allows
us to consolidate user feedback by exploiting recurring information entities as
well as the application use context.

89



Chapter 4 Grounded Theory on Continuous User Involvement

90



Chapter 5

Proactive and Context-Aware

Recommendation of User

Feedback

«If you have an apple and I have an apple and
we exchange these apples then you and I will still
each have one apple. But if you have an idea and
I have an idea and we exchange these ideas, then
each of us will have two ideas.»

— George Bernard Shaw

In Chapter 3 we found that post-deployment user feedback is helpful and
important for developers, but also that its analysis requires high effort. In order
to assess the impact of user feedback, developers need to consolidate and group
it according to the user experience described, which is often insufficient or even
missing. In Chapter 4 we found that user communities can help with such an
assessment and concluded that user experience should be gathered automatically
since it facilitates the consolidation.

In this chapter, we describe a solution for the consolidation and prioritization
of user feedback which harnesses the user community to group user feedback in
a proactive way, while increasing its overall quality. To avoid the creation of
unstructured, duplicate feedback, we recommend existing relevant feedback to
users, which they can rate, vote for, or comment on instead of creating feed-
back themselves. The relevance of existing feedback is estimated by comparing
users’ experience with an application based on the corresponding observed use
contexts. We call this approach proactive and context-aware recommendation
of user feedback, or Portneuf.

In Section 5.1, we present the domain-independent Portneuf model, and in-
troduce its main abstractions (user experience, collective user feedback, feedback
recommendation, and feedback impact) as well as their structural and dynamic
relationships. In Section 5.2 we describe three different applications of Port-

91



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback

 

 
































Figure 5.1: Overview of the Portneuf user involvement model.

neuf in common software engineering activities. Section 5.3 introduces the
Portneuf framework architecture and explains recommendation and impact
assessment algorithms. Section 5.4 discusses related work, focussing on user
feedback research and existing user feedback systems. Section 5.5 summarizes
the chapter, revisiting the most important properties of Portneuf.

5.1 Portneuf Model

Figure 5.1 shows an overview of the domain-independent Portneuf model,
which we will describe in this section. In order to realize the four key factors for
continuous user involvement, the Portneuf model introduces user experience
as main abstraction (Section 5.1.1). With Portneuf, individual users describe
their experience in user feedback, while the user community as a whole provides
collective user feedback (Section 5.1.2). Portneuf allows to group similar feed-
back and avoid duplicates by creating feedback recommendations based on its
relevance in a specific context (Section 5.1.3). Finally, the model enables devel-
opers to assess the impact of specific feedback based on the opinion in the user
community and the individual reputation of the reporters (Section 5.1.4).

5.1.1 Model of User Experience

Users’ experience with an application depends on multiple factors, as illustrated
in Figure 5.2. Using an application in a specific context influences users’ per-
ception of their mental model correctness. This perception together with the

92



5.1 Portneuf Model




















Figure 5.2: Main abstractions of user experience.

particular context of use determine user experience. Consequently, in the fol-
lowing we model application use, context, and mental model correctness before
introducing our model of user experience. We derive these models mainly from
research insights in human-computer interaction, usability engineering, and con-
text aware software engineering.

5.1.1.1 Application Use

We model application use as composition of both user interaction and applica-
tion execution, as illustrated in Figure 5.3. The obvious reason for this combina-
tion lies in the fact that both user and application are involved in the use of an
application on an interactive computer system. Typically, application execution
brings forth a result (e.g. on a user interface) on which the user can react with
an interaction (e.g. by clicking a button), thereby causing further application
executions. This dynamic behavior has been termed a “dialogue” in human-
computer interaction [55]. With this model we also capture the two major
information needs in software maintenance [298]: To understand how an appli-
cation was used, developers need information about user interactions (e.g. steps
to reproduce an error) and about the application execution (e.g. stack traces).
Application use consists of the ordered sequence of user interactions and ap-
plication executions, which is why it can be seen as use “history”. We chose
this retrospective perspective because the model needs to capture events that
already have happened.

User Interaction Human-computer interaction always happens at the user
interface [140], which includes both hardware and software interfaces. For the
purpose of this thesis, only software user interfaces are considered. User interac-
tion refers to the interaction of a user with an application via the user interface
and denotes a two-way causal effect, as opposed to a single-way action [179].
Users typically interact multiple times with an application while using it. For

93



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback





































Figure 5.3: Model of application use.

example, they might start a word processor to edit a document, select text in
the document, click on a button to increase the font size, and so forth.

Application Execution With application execution, we denote the working
activity of an application. Application execution is a time-constrained, abstract,
multi-granular concept, which can be broken down from the conceptual notion
up to a single execution step of the processor. Software engineers define how an
application executes by modeling its behavior with dynamic and static models,
and by implementing this behavior in the form of classes and methods [49].
Maintenance engineers investigate application execution retrospectively e.g. by
investigating method calls in stack traces [48, 298]. A large research fraction is
concerned with enabling and improving the deterministic replication of specific
application executions [80, 185, 204, 225, 267].

How a user uses an application depends also on her current context, which
is particularly evident in the case of mobile applications. Consequently, we
introduce context as major abstraction in the Portneuf model. Figure 5.4
shows how context influences application use in the model, and which concepts
it includes.

Context According to Merriam-Webster, context describes “the interrelated
conditions in which something exists or occurs” [195]. In computer science, the
term mainly refers to conditions under which a system operates, that are rel-
evant to the system behavior. Definitions have focused on different types of
conditions, at first mainly on physical, environmental, and user-specific circum-
stances. Schilit et al. [256] coined the term context-awareness in the ubiquitous
computing area in 1994. The authors defined context in particular as location of

94



5.1 Portneuf Model













































Figure 5.4: Context-aware model of application use.

95



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback

use, nearby objects (e.g. people), and changes to these entities over time. In the
following research the definition shifted to system users, their physical but also
emotional state, and their environment [47, 81, 257]. Dey and Abowd’s defini-
tion of context [82] is information-centric and focuses more on the interaction of
users with an application. The authors define context as any information used to
describe a person, place, or object relevant to the interaction between a user and
an application, including the user and applications themselves. Maalej defines
context in a work-centric way. He summarizes the context in which software en-
gineering work is performed as “the set of all events and information, which can
be observed and/or interpreted in the course of the work, except those events
and pieces of information that constitute the change (i.e. the main output of the
work).“ [179]. Our definition of context does not aim for a complete description
of its elements, but rather frames its necessary properties. It takes into account
any influence on application use and is particularly motivated (a) by the fact
that both user interaction and application execution happen in a specific context
and (b) by mobile applications which are used under changing circumstances.

Definition 3. Context refers to all current and past conditions and events
which influence the interaction of a user with an application or the execution of
an application on a system.

When building context-aware systems, one property of context is indispens-
able: observability [179]. At any point in time, any user interaction and any
application execution happens in a specific context. However, only observable
contextual information is useful for context-aware systems, because it can be
exploited to change the application behavior.

5.1.1.2 Mental Model Correctness

According to Norman [208], users develop a mental model of an application
while using it. System designers try to anticipate the users’ mental model and
realize application user interfaces and workflows based on this prospect, called
“design model” by Norman. Thus, the design model depends on a hypothetical
mental model created by designers, not end users. Problems occur if designers
make wrong assumptions, i.e. when the hypothetical mental user model does not
match with the real one.

As shown in Figure 5.5, users form their mental models by observing appli-
cation behavior, i.e. by interpreting the visible application structure as well as
the perceived application execution [208]. At the same time, users compare
the observed application behavior to the expected application behavior, i.e. how
they think the application should look like and how it should react on specific
interactions. From a user perspective, the difference between expected and ob-
served application behavior denotes if their mental model is “correct”, in the

96



5.1 Portneuf Model




























Figure 5.5: Model of expected and observed application behavior.

sense that it corresponds to the designers’ assumption. Users obviously per-
ceive how correct their mental model is: If it fits well, the application will result
user-friendly and highly usable, while otherwise it will be considered unusable.
Consequently, the users’ mental model correctness influences their experience.
Besides, expected behavior changes over time while the user’s mental model
evolves. Therefore, new users have different expectations than experienced ones.
Recently researchers such as Paternò et al. [228] and Vargas et al. [279] exploit
these facts in order to identify usability problems by analyzing user behavior.

Note that our definition of mental model correctness is user-centric, i.e. it
refers to correctness from users’ point of view. This perspective is appropriate
for software evolution, where the system is already deployed. It might not be
for traditional software design, where mental model correctness is seen from the
designer’s point of view, and refers to the correctness of the assumptions made.

5.1.1.3 User Experience

In computer science, the term user experience was first coined in 1995 by Nor-
man et al. [210] in an organization overview of Apple’s Advanced Technology
Group (ATG), where the authors used it to express their approach to human
interface research and application. Until today there is no commonly accepted
definition of user experience. There are even movements to collect the various
user experience definitions [248] and to come up with a definition inspired by
the community [247]. According to Hassenzahl and Tractinsky [132], the term
is associated with a variety of meanings, “ranging from traditional usability to
beauty, hedonic, affective or experiential aspects of technology use”. But un-
like usability, which relates to more pragmatic concepts like effectiveness and
efficiency of use as well as subjective user satisfaction [143], most researchers
consider user experience to be much broader in scope.

97



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback













 
















 

Figure 5.6: Context-sensitive model of user experience.

According to an early definition by Alben [6], user experience covers “all the
aspects of how people use an interactive product: the way it feels in their hands,
how well they understand how it works, how they feel about it while they’re
using it, how well it serves their purposes, and how well it fits into the entire
context in which they are using it”. Several researchers have further published
their views of user experience, focusing on different aspects like enjoyment [131]
and social interactions [20], or specific platforms such as the web [108] and mo-
bile devices [60] (for an overview refer to [103]). According to Hassenzahl [130],
experiences are unique to individuals and change over time. More specifically,
Kankainen underlines the importance of previous experiences, which may influ-
ence the present user experience [155]. Consequently, our model includes past
and present user experiences, as shown in Figure 5.6.

Law et al. [170] conducted a scientific study among researchers and found that
most respondents agreed that user experience is dynamic, context-dependent,
and subjective. The ISO standard 9241-210 [145] defines user experience as
“a person’s perceptions and responses that result from the use or anticipated
use of a product, system or service”. The first authors to collect influential
components on user experience were Forlizzi and Ford [104]. According to them,
user experience is influenced by the user, the product, the context of use, and
social and cultural factors. The first three factors can also be found in other
definitions of user experience [145, 170, 247] as well as in definitions of usability
[143]. Consequently, we model user, application, and other context as important
factors for user experience.

Definition 4. User experience describes a user’s perception of a system at
a given point in time and in a specific context. It is mainly determined by this
context and in particular by the application use. It depends on the user’s past
experience and mental model.

98



5.1 Portneuf Model
















 









Figure 5.7: Model of user feedback and user experience.

Since user experience is a sensation subjective to a human being, it is not
directly measurable by means of an algorithm with current technology. Nev-
ertheless, the main influential factors, specifically the context and in particular
application use, can be observed. This allows an indirect measurement of user
experience. Capturing user experience is a prerequisite for the functionality
of Portneuf. Consequently, we formalize our assumption about the relation
between user experience and context in the following hypothesis.

Hypothesis 5.1. Let ux(u, a, c, t) : U⇥A⇥C⇥R! UX be the user experience
of user u with application a in context c during the time interval t. Let further
d

UX

: UX⇥ UX!R be a metric on user experience. Then, there exist n 2 N+,
a computable function � : U ⇥ A ⇥ C ⇥ R! Rn, and a homomorphism ⌥ :

Rn ! UX, such that d

n

(�1, �2) = d

UX

(⌥(�1),⌥(�2)) for two observed contexts
�1, �2 2 Rn with �1 = �(u1, a1, c1, t1) and �2 = �(u2, a2, c2, t2). ⇤

Hypothesis 5.1 claims that comparing two observed contexts of use in an
appropriate way suffices to compare the underlying user experience.

5.1.2 Model of User Feedback

As shown in Figure 5.7, we model the activity of providing feedback as particular
type of user interaction. This is always the case for in-situ feedback which is
given while actually using the application itself. Enabling in-situ user feedback
is one particular goal of the Portneuf model. We distinguish between the
activity of providing feedback, and the actual user feedback which is produced
during this activity.

Definition 5. Providing feedback is a user interaction carried out by the user
to communicate her subjective experience with the application to the applica-
tion developers with the goal to improve the application. The resulting, user-
generated artifact of this activity is called user feedback.

Whether a specific user feedback eventually contributes to improve the ap-
plication is not relevant in our definition, since it is not clear at the time of
feedback provision.

99



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback










  









 



 








Figure 5.8: Model of collective user feedback.

It is important to note that what users report depends on their prior experi-
ence with the application. For instance, we assume a user will only file a bug
report if she has experienced a bug, or request a feature after missing it while she
was using the application. Recent empirical studies suggest that user feedback
describing prior user experience is particularly useful for designers and devel-
opers [216, 244]. Reasons for this include that user feedback describing prior
experience is typically concrete and detailed, often provides “clear examples of
specific, contextual issues which are hard to imagine”, and contains personal
stories which are felt trustworthy. In particular concrete information about the
application use and the context of use are considered useful. In order to fix er-
rors, for example, concrete descriptions of user experience such as the steps that
lead to the error, as well as expected and observed behavior are of particular
help for developers [298]. Unfortunately, research has shown that user feedback
which contains this information is the exception rather than the rule [298]. In
Chapter 4 we found that a possible reason for its absence lies in users’ disap-
pointment when they have to report shortcomings. But even if users include
their experience in their feedback, it is often not correct or not sufficient for
developers to reproduce the reported situation.

5.1.2.1 Collective User Feedback

As shown in Figure 5.8, collective user feedback consists of feedback from multi-
ple users within a user community. First, a specific user provides user feedback
describing her experience. Second, other users provide social feedback, typically
as a reaction to already existing user feedback or other social feedback.

Social Feedback We use the term social feedback to indicate feedback which
is given as reaction to other feedback. The term is inspired by the lightweight
feedback mechanisms typically used in Web 2.0 communities. These include

100



5.1 Portneuf Model

 


 


 








 


 






















Figure 5.9: Example of collective user feedback.

ratings, votings, and comments [176]. Rating refers to the assignment of an
ordinal value, and can be expressed for instance using a Likert scale [174] or an
increasing number of stars. Voting denotes assigning a nominal assessment, and
can be expressed for example using a like button [234]. Comments consist of
text that typically refers to existing prior user feedback or parts of it, where the
author expresses her opinion using natural language. In general, social feedback
reacts to already existing feedback and is utilized to express the author’s positive
or negative opinion about it. Since rating and voting allows users to express their
opinion about a specific prior user feedback in a quantitative way, collective user
feedback in the best case enables the aggregation and thus quantification of
the user community’s opinion about a specific topic. In other words, it allows
developers to assess the community impact of specific feedback

Definition 6. Collective user feedback consists of a specific user feedback,
written in natural language, and the transitive closure of all social feedback
which emerged as a reaction to this user feedback.

Figure 5.9 gives a concrete example of collective user feedback as it can be
found in blogs. User Anna published a blog post where she describes her user
experience. Next, user Betty commented on Anna’s blog post. After that, user

101



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback

















 

 

 

 





Figure 5.10: Collective user feedback and user experience.

Ciro provides a comment to Betty’s previous comment, while user Damir rates
it. Last, user Erika votes for the initial blog post.

5.1.2.2 Collective User Feedback and User Experience

We model user experience as the central grouping concept for collective user feed-
back, as shown in Figure 5.10. As we have seen above, user feedback describes
prior user experience. With the additional social feedback other users express
their opinion about this user experience and about the conclusions drawn by
the previous authors. This makes user experience the central “topic” discussed
by the users contributing to collective user feedback, and gives rise to a com-
mon, collective user experience. While “co-experience” [20] is user experience
which is created by social interaction, collective user feedback refers to different
individual experiences which are grouped around the same application.

Combined with user experience, collective user feedback can be seen from
three perspectives. It represents communication between users and developers,
contains issues experienced by users, and allows for user innovation.

Communication Collective user feedback can exhibit a communication struc-
ture similar to a discussion. Typically, a user called the reporter first publishes
user feedback which is read by other users afterwards, who then react to the
feedback by providing social feedback for their part. Consequently, collective
user feedback exhibits the same structure as a discussion thread about a spe-
cific user experience topic. In addition to traditional discussions, social feedback
allows users to express and quantify agreement and disagreement.

Issues In rationale management, an issue represents a concrete problem to
be solved [49]. Additionally, issues carry information about possible solutions
(alternatives), desirable qualities to be satisfied by a valid solution (criteria),

102



5.1 Portneuf Model



































Figure 5.11: Context-aware model of user feedback recommendation based on
user experience.

argumentations for different alternatives by different stakeholders, and eventu-
ally a final decision. Collective user feedback can describe similar information.
The initial user feedback typically describes a concrete problem of the user based
on her experience with the application. Often, also argumentations for an al-
ternative are given, and in some cases even justified by arguing with criteria.
Therefore, collective user feedback can be seen as user generated issue with mul-
tiple argumentations by different stakeholders for different alternatives. In fact,
developers typically create issues from gathered user feedback as we have seen
in Chapter 3.

Innovation Researchers like Tuomi and von Hippel [275, 283] have shown that
many users modify products for their own use in a socially and socio-technically
distributed way. Thereby, users particularly strive for innovations that deliver
novel functions [240]. Collective user feedback allows users to discuss their ex-
perience, express different points of view, and vote for and against specific in-
novations. This collaboration fosters synergies between the opinions of different
users, leading to more perspectives, focused, and mature feedback [182].

5.1.3 Model of User Feedback Recommendation

The main goal of Portneuf is to group similar user feedback and avoid du-
plicates by recommending users to provide social feedback on existing feedback.
Figure 5.11 shows the Portneuf model of user feedback recommendation. A
framework implementing the Portneuf model creates recommendations of ex-
isting user feedback based on the user experience that led to its publication
and based on the relevance of this experience within the current context of ap-
plication use. The following hypothesis underlies the recommendation of user
feedback in the Portneuf model.

103



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback





















 






Figure 5.12: Context-aware model of feedback recommendation relevance.















 






















Figure 5.13: Model of user reputation score.

Hypothesis 5.2. The relevance rel(f, u) of the recommended user feedback f

for a user u depends upon the user experience ux(u, a, c, t). The more similar
the user experience is to the one described in the user feedback, ux(f), the more
relevant this feedback is for the user: rel(f, u) ⇠ d

UX

(ux(u, a, c, t), ux(f)) ⇤

Figure 5.12 illustrates this relation between the relevance of a user feedback
recommendation and the similarity of user experience. Note that by Hypoth-
esis 5.1 the relevance of a user feedback recommendation can be measured by
comparing the corresponding observed contexts.

5.1.4 Model of User Feedback Impact

Another major aim of Portneuf is to allow developers to assess the impact of
specific feedback. As shown in Figure 5.13, the impact of collective user feedback
is determined by the individual impact of the contained user feedback, which in

104



5.1 Portneuf Model











































Figure 5.14: Model of user reputation score.

turn depends on two factors. First, the user feedback itself, which is quantifiable
either by simply counting it or by considering its value in case of a voting or
rating. Second, the reputation score of the user who provided the feedback.

We explicitly model the reputation score of a user which corresponds to the
user’s potential for the user community, for two reasons. First, to provide a
measure of trust for developers (cf. Chapter 3), and second, to be able to increase
the quality of user feedback. It has been shown that both can be reached by
employing reputation systems [154]. Online community users often need to
interact with other users whom they do not know in person and with whom
they do not have prior experience. In this situation users rely on an estimation
of the trust of other users, either based on frequency or based on transitive trust.
Moreover, reputation systems are utilized to create incentives for specific desired
user behavior, in particular in systems with user generated content. Reputation
points are for instance employed to increase the number of contributions, but
also to improve the content quality.

As shown in Figure 5.14, we model the reputation score of a user within a
community depending on the feedback the user provided (e.g. amount of feed-
back), and depending on the social feedback which this specific user got from
other users in the community (e.g. rating of or voting for her feedback).

This model is inspired by the current Web 2.0 reputation systems, where
users can earn reputation points1 and so-called badges2. Prominent examples
include Stack Overflow [1], foursquare [106], or eBay [89]. Jøsang et al. consider

1see for instance http://superuser.com/faq#reputation
2see for instance http://superuser.com/badges

105



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback





Figure 5.15: Portneuf applications.

reputation as “a collective measure of trustworthiness (in the sense of reliability)
based on the referrals or ratings from members in a community” [154]. The
concrete meaning of reputation and the specific measure applied to calculate it
can vary and depend on the situation at hand.

Some of the various measures for computing reputation and trust that have
been proposed are employed in commercial applications such as eBay and Google.
Basic principles include: summation or average of ratings [238, 258], Bayesian
systems [153, 196, 286], discrete trust models [2, 54], belief models [151, 152],
fuzzy models [190, 252], and flow models [172, 223, 297]. For a comprehensive
description of these measures, we refer the reader to [154].

5.2 Portneuf Applications

The Portneuf model introduces the abstract concepts necessary to capture
user experience and collect user feedback, to group user feedback around user
experience into collective user feedback, to generate feedback recommendations
based on user experience and context, and to assess the impact of feedback based
on its value for the community.

The abstract concepts defined in Portneuf are generic and applicable for dif-
ferent situations. More specifically, the model can be instantiated and extended
for any application which involves retrospective feedback, i.e. any activity carried
out when a system or prototype is available. In the remainder of this section, we
present three usage scenarios of Portneuf (illustrated in Figure 5.15): early
design, system testing, and software evolution, which is the main focus of this
dissertation.

106



5.2 Portneuf Applications

5.2.1 Early Design

At first glance, early software design does not seem to allow retrospective feed-
back, since the system to be designed is not yet implemented. However, recently
iterative process models and rapid prototyping techniques are becoming main-
stream. Developers use prototypes especially in the early design phases to be
able to evaluate specific system parts before the system as a whole has been
completed [268]. Prototypes are particularly helpful to deal with the IKIWISI
(“I’ll know it when I see it”) phenomenon [39], which states that users are fre-
quently not able to express their needs and expectations from scratch, but quite
good at criticizing an existing system. Consequently, prototyping is gaining
more and more attention in research and practice. Recent research by Stangl
and Creighton even suggests a “continuous demonstration” of the system [269],
in order to benefit from feedback as early as possible.

Developers typically evaluate prototypes with potential users, in order to iden-
tify shortcomings such as, for instance, usability issues. As discussed in Chapter
2, the employed user involvement methods usually require developers to select
a set of users (e.g. focus groups [206]). The size and representativeness of this
set decides about the success of the evaluation. It is therefore no wonder that
research tries to develop methods to involve as many persons in evaluations as
possible, for example by utilizing tools such as the Amazon Mechanical Turk3

[160]. But with a growing number of users the problems are also increasing.
Portneuf provides support for two major problems of large-scale prototype

evaluations. First, it enables a structured collection of the emerging issues.
Portneuf captures the experience of the user with the prototype and provides
recommendations for existing similar issues whenever users try to report. Sec-
ond, it allows developers to quantify the evaluation result by calculating the
impact of reported issues among all users.

Figure 5.16 shows how the Portneuf model can be used during early system
design. In this example, prototype testers might judge a prototype to be
confusing during a usability test. Consequently, usability test issues are
created that correspond to collective user feedback and contain usability test

alternatives or argumentations. In the following we describe a scenario that
shows how Portneuf supports early design.
Prototype tester Laura performs a usability test of the Account view

in a banking software. Her task is to change the account holder name. She
opens the Account view, which is then shown by the system. She searches for
the account holder field, but cannot find it. After two minutes, the prototype
runs into a security timeout and closes the form. Laura’s impression is that
the Account view is confusing. Consequently, she raises an issue to the de-
signers, stating that the Account view should be improved which is considered

3https://www.mturk.com/mturk/welcome

107



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback









































Figure 5.16: Using Portneuf during early design.

an alternative in rationale management. Two days later, prototype tester

Christine performs a similar usability test for the Account view. Her task
is to copy the bank code into the clipboard. She opens the Account view, which
is shown in the user interface by the system. She searches for the bank code

field on the view, but has problems finding it. After two minutes, the prototype
runs into a security timeout and closes the form. Similar to Laura, Christine
is not satisfied with the Account view as she finds it unintuitive. She plans
to raise a corresponding issue, but instead obtains a recommendation to write
an argumentation for the alternative reported by Laura, who had a similar
experience with the Account view. Christine reads Laura’s alternative and
decides to support it by the argumentation that she could not even find the
bank code.

Figure 5.17 depicts the resulting objects. The left side of the figure shows
Laura’s user experience and user feedback, while the right side illustrates
these objects for the case of Christine. Note that in this case, two differ-
ent usability tests led to the same issue, what typically complicates a reactive
consolidation of such feedback.

5.2.2 System Testing

System tests aim at ensuring that the system under development complies with
the specified functional and nonfunctional requirements [49]. Traditionally, de-
velopers prepare these system tests with test case specifications, which contain
inputs, drivers, stubs, together with the expected outputs as well as the con-
crete tasks to be performed by testers [49]. Tests are executed by testers, a

108



5.2 Portneuf Applications








































































































Figure 5.17: Example of how Portneuf recommends to argument for a
usability test alternative during early design.

109



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback

developer role specific to software testing. Testers document test executions in
test incident reports, and in case of a failure, describe how the observed results
deviate from the expected. Test incident reports are collected in the test report
summary, which allows developers to review the failures, prioritize them, and
plan for changes in the system. Software testing is recently undergoing changes,
which are particularly fostered by the ubiquitous internet.

For example, software beta tests are more and more performed in the public.
Practically any person thus can become a system tester, delivering important
information about software usage and latent errors to developers. This trend
culminates in the phenomenon of the perpetual beta [215], where a product is
incrementally improved and enhanced while already being rolled out. This prac-
tice was originally initiated by Google and has become mainstream especially
for web applications.

Another considerable change occurred in the way mobile applications are
tested. Mobile testing platforms such as TestFlight [271] or HockeyApp [29]
allow developers to distribute test versions of their mobile software to selected
persons, who can download and use it with few clicks. These online services use
mobile content provisioning techniques to enable wireless ad hoc distribution of
the system under test. Moreover, they allow testers to provide feedback and also
offer features to analyze test results. The trend is clearly going towards tests
with increasing amounts of testers. However, an increasing number of testers
leads to several challenges, particularly for test documentation and analysis.

Portneuf provides support for two major problems of system tests by a
large set of users. First, it enables a structured collection of test results and test
reports. Portneuf captures the testers’ experience with the software while
testing and generates recommendations for existing test reports when testers
begin to document their results. Second, it allows developers to quantify the
test results by calculating the impact of reported test incidents among all testers.

Figure 5.18 shows how the Portneuf model can be used during system test-
ing. In this example, system testers might discover a failure during a system
test. Consequently, test report summaries correspond to collective user feed-
back and contain test incident reports or comments. In the following we
describe a scenario that shows how Portneuf supports system testing.
System tester Evelyn performs a system test of the XML Export feature

in a spreadsheet software. Her task for this test is to save a specific worksheet
in XML format under a given file name. To this end, she clicks the Save as

XML menu item in the spreadsheet, and specifies a file name. Unfortunately,
the system generates a TransformerException. Evelyn closes the message and
retries the export feature, but the system shows the same TransformerEx-

ception message again. Evelyn therefore considers the system test to have
failed. Consequently, she writes a test incident report, describing that
the XML Export is not working. Three hours later, system tester Natalie

110



5.2 Portneuf Applications








































Figure 5.18: Using Portneuf during system testing.

performs the same system test of the XML Export feature. After opening the
spreadsheet, she clicks the Save as XML menu item, and specifies a file name.
As in the case of Evelyn, the system replies with a TransformerException.
Natalie suspects the file name of being the error cause. Consequently, she
repeats the export process, but changes the target file name. Indeed, this
time the export is successful and the system writes the success status to
a log file. At the end of the system test, Natalie plans to write a new test

incident report, but instead obtains a recommendation to write a comment

on the one filed by Evelyn, who had a similar experience with the XML Export

feature. Natalie reads Evelyn’s report and decides to add her experience how
she managed to save the file successfully and her assumption on the possible
error cause as a comment.

Figure 5.19 depicts the resulting objects. The left side of the figure shows
Evelyn’s user experience and user feedback, while the right side illustrates
these objects for the case of Natalie. Note that in this case, two different
test results were obtained by two system testers, what typically complicates a
reactive consolidation of such feedback.

5.2.3 Software Evolution

Software evolution – also referred to as software maintenance [62] – covers all
software engineering aspects of an iteratively and incrementally evolving system
[113]. It includes activities particularly related to the transition between differ-
ent iterations, i.e. it is concerned with improving, adapting, and perfecting soft-
ware and managing changes. Software evolution and support services constitute
a growing percentage of the software market, in particular since recent business

111



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback





















































































 







 





Figure 5.19: Example of how Portneuf recommends to comment a test

incident report during system testing.

112



5.2 Portneuf Applications

models are increasingly focusing on product quality, changing orientation from
license-centered to service-centered [219]. The annual costs of software prod-
uct evolution make between 15 and 25% of the software license list prices [83].
Open source software licenses are often even free of charge, while services offered
around the software represent the major source of income. Software evolution
is tedious, time-consuming, and intensively involves highly qualified personnel.
Studies have shown that software engineers spend a significant amount of their
time on maintenance tasks [180]. Assuming a typical software life cycle, more
than 75% of the costs are associated to software evolution, and this trend is
expected to increase further [88].

As we found in Chapter 3, post-deployment user feedback such as feature
requests and bug reports become increasingly important to developers. They
analyze user feedback in order to create and prioritize software evolution tasks.
In particular the feedback impact, i.e. the frequency of its occurrence, determines
the priority of these tasks. In order to understand the impact of user feedback,
developers need to estimate how many users are affected. But this estimation is
complicated and requires high effort, when done manually. With an increasing
number of users and growing feedback volume, as is the case for novel applica-
tion distribution platforms (see Chapter 4), a manual analysis becomes actually
infeasible.

Portneuf provides support for two major problems of software evolution
with a large number of users. First, it enables a structured collection of user
feedback such as feature requests and error reports. Portneuf captures users’
experience with the software and creates recommendations for existing reports if
users decide to provide feedback. Second, it allows developers to quantify gath-
ered user feedback by calculating the impact of the reported errors or requested
features across the user community.

Figure 5.20 shows how we use the Portneuf model for user involvement
during software evolution. In this example, end users might discover that an
application is not working correctly while using it. We model feedback
threads corresponding to collective user feedback. These contain, for instance,
error reports or votings. In the following we describe a scenario that shows
how Portneuf supports software evolution.
End user Edoardo needs to find a document on his newly installed Mac OS

X device, and uses the spotlight search. He triggers the spotlight search

feature using a keyboard shortcut and starts typing. However, the spotlight

results list remains empty. Edoardo decides to give the system a little bit
more time and waits for the results to appear. After one minute, the system
hides the result list without having shown any hit. Edoardo is not satisfied
with the user experience of the new OS X version and decides to write a
corresponding error report describing that spotlight search does not work.
Four weeks later, end user Filippo who has just updated to the newest version

113



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback






































Figure 5.20: Using Portneuf during software evolution.

of OS X searches for a text document on his machine. As Edoardo, Filippo
tries to find it via the spotlight search feature. He opens the spotlight

search by clicking the corresponding icon and starts typing. But as in the case
of Edoardo, the spotlight results list remains empty. Since Filippo is in a
hurry he decides to cancel the search and tries to find the file manually instead.
Consequently, the system hides the result list without having shown any hit.
After eventually having found the document, Filippo wants to let Apple know
that he is disappointed with the user experience of the new OS X version and
opens the feedback system in order to write a new error report. But instead
the system recommends Filippo to vote for the error report written earlier
by Edoardo, who had a similar experience with the spotlight search feature.
Filippo reads Edoardo’s report and finds that Edoardo has described exactly
what he encountered. He therefore votes for the error report thus signalizing
his agreement.

Figure 5.21 depicts the resulting objects. The left side of the figure shows
Edoardo’s user experience and user feedback, while the right side illustrates
the corresponding objects for the case of Filippo. Note that in this case, two end
users have encountered the same error independently from each other. Because
end users typically do not browse bug trackers before reporting an error, this
scenario usually leads to duplicate error reports which considerably complicate
the impact analysis of user feedback.

114



5.3 Framework Architecture





































































































Figure 5.21: Example of how Portneuf recommends to vote for an error

report during software evolution.

115



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback











 




































Figure 5.22: Portneuf framework architecture.

5.3 Framework Architecture

In this section, we describe the Portneuf framework, an implementation of the
domain-independent Portneuf model. Figure 5.22 illustrates the Portneuf

framework architecture. The monitoring subsystem (Section 5.3.1) uses sensors
to observe the use context and thus is the main enabler of Portneuf’s context
awareness. The user experience profiling subsystem (Section 5.3.2) aggregates
the raw monitored information into user experience snapshots which represent
a user’s experience with the application in a specific time interval, and allows
for a comparison between users and their experience. The user feedback subsys-
tem (Section 5.3.3) accepts feedback provided by the user and combines it with
the corresponding user experience snapshot to obtain context sensitive feedback,
which is then stored. The two subsystems which correspond to the two main
applications of Portneuf are shown on the highest layer. First, the recom-
mendation subsystem (Section 5.3.4) includes a recommender system for user
feedback and employs two recommendation strategies to suggest users to rate,
vote for, or comment on existing feedback, fostering collective user feedback.
Second, the analytics subsystem (Section 5.3.5) implements a ranking algorithm
for collective user feedback which utilizes social feedback by the user community
in order to rank the feedback obtained for developers.

116



5.3 Framework Architecture
























































 

Figure 5.23: Portneuf monitoring subsystem.

5.3.1 Monitoring

In order to gather information about users’ experience, Portneuf collects data
about their use context, specifically about user interaction and application ex-
ecution. Figure 5.23 shows the monitoring subsystem of Portneuf, which
realizes this observation functionality.

Multiple sensors monitor the use context and create context events when
they observe specific situations or values. For instance, a user interaction

sensor might observe how the user moves the cursor, which buttons she clicks,
or which text she enters in a form, while an application execution sensor

might discover exceptions raised or even monitor which methods were called dur-
ing the execution. Context events have a specific type, which serves as seman-
tic description of the observed situation. For instance, a ButtonClickedEvent

denotes that the user clicked a button. The location of a context event

refers to the place where the real observed event has happened. For instance,
when a user clicks a button the location encapsulates the position of the but-
ton in terms of the user interface hierarchy. Furthermore, each context event
holds a timestamp which denotes when the event has happened, and stores the
duration of the event. After their creation, context events are stored in a
sequential order in an event store. This data base represents the repository
for all further analysis of context events.

Note that we designed Portneuf under the open world assumption [251].
This means that whether an observation is made or not depends on the presence
of a suitable sensor. For instance, if no user interaction sensor is present, this
does not mean that there are no user interactions, but that they are unknown.

117



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback















Figure 5.24: Portneuf sensor lifecycle.

But since Portneuf is based on the open world assumption, new sensors can
be added, leading to a more precise image of the reality.

In general, sensors can be generic or specialized. Generic sensors are inde-
pendent of the monitored application, while specialized sensors are tailored to
a specific application. Because of the open world assumption and to allow for
future extension and application to arbitrary situations, we designed Port-

neuf without constraining the implementation technology of sensors. Hence,
sensors might be part of the original application, standalone components, or
linked libraries, implemented in arbitrary programming languages. We designed
Portneuf as a platform which makes it possible to attach sensors like plugins
at runtime, independently from the actual development of Portneuf.

The sensor bridge provides the interface between the Portneuf monitor-
ing subsystem and Portneuf sensors, which might run outside the runtime
environment of Portneuf. To enable technology independence, we made two
design decisions. First, we provide the sensor bridge interface using a platform
and application independent communication technology. To this end, we im-
plemented a set of REST [100] services. Second, we defined a sensor lifecycle
(see Figure 5.24) which all sensors have to implement in order to be Portneuf

compliant, i.e. to be integratable into the platform.
This lifecycle specifies that Portneuf sensors are first installed in the

user’s system, using installation mechanisms which might be specific to these
sensors. Note that the Portneuf sensor bridge does not need to run for in-
stalling sensors. After installation, sensors can register at the Portneuf

sensor bridge. In the registered state, sensors regularly send heartbeats to
the Portneuf sensor bridge in order to obtain commands which control their
further behavior. If the sensor bridge does not respond the heartbeats after
a specific time period, sensors return in the Installed state. After receiving
a start command, registered sensors become active. Only then do they start
to monitor. Whenever sensors have gathered a new event, they send it to the
Portneuf sensor bridge. The obtained response then contains the next com-
mand for the sensors.

118



5.3 Framework Architecture







 













































Figure 5.25: Portneuf user experience profiling subsystem.

5.3.2 User Experience Profiling

As shown in Figure 5.25, the Portneuf user experience profiling subsystem
provides means for creating snapshots which represent the experience of a
specific user for a given time period. User experience snapshots allow
Portneuf to compare feedback based on a comparison of the corresponding
user experience encoded in the feedback. In order to perform this compari-
son, Portneuf first quantifies the experience described in the contained user

experience snapshot entries. Each user experience snapshot entry en-
codes the experience of a user with exactly one distinct pair consisting of a
context event type and a location, for instance the ButtonClickedEvent

event type and the location viewAccount.btnExport. User experience is then
quantified in form of frequency, duration, and age of the corresponding con-
text events. Research by Maalej [179] has shown that these measures allow for
a valid estimation of the relevance of context events.

Definition 7. Let T be the set of context event types and L the set of context
event locations. We define the experience value of user u with a context event
type t 2 T at location l 2 L formally as

expV al

u

(t, l) :=

freq

u

(t, l) · dur
u

(t, l)

age

u

(t, l)

, (5.1)

with freq

u

= 0, dur

u

> 0, age

u

> 0 8t 2 T, l 2 L.

119



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback

Algorithm 5.1 UserExperienceSimilarity.
Require: user experience snapshots ux

u1 , uxu2 .
1: L CommonUserExperienceLocations(ux

u1 , uxu2)

2: �!exp
u1  CalcUserExperienceVector(ux

u1 , L)

3: �!exp
u2  CalcUserExperienceVector(ux

u2 , L)

4: �  cosineSim (

�!
exp

u1 ,
�!
exp

u2)

5: return �

Algorithm 5.2 CommonUserExperienceLocations.
Require: user experience snapshots ux

u1 , uxu2 .
1: L ;
2: for all locations l 2 ux

u1 do
3: if l 2 ux

u2 then
4: L L [ {l}
5: end if
6: end for
7: return L

Corollary. 8t 2 T, l 2 L, the user experience ux

u

of user u can be written as
matrix over all experience values as follows:

ux

u

:

(
T⇥ L ! R+

0

(t, l) 7! expV al

u

(t, l)

(5.2)

In the resulting user experience matrix, column vectors denote the experience
of user u with a specific location regarding all event types that have occurred.
Likewise, row vectors capture the user’s experience with a certain event type

regarding all locations within the observed context.
Algorithm 5.1 illustrates how we compare two user experience snapshots. In

the first step, we obtain their intersection by comparing the contained locations.
In the second and third step, we create a user experience vector from each matrix

Algorithm 5.3 CalcUserExperienceVector.
Require: user experience snapshot ux, set of locations L.
1: �!exp (0)||L|| // zero-vector of length ||L||
2: for l 2 L do
3: T

l

 {t : 9(t, l) 2 ux}
4: ~e

l

 ux

t,l

8t 2 T

l

5: �!
exp

l

 ||~e
l

||
6: end for
7: return �!exp

120



5.3 Framework Architecture

✓ btnSave btnExport

click 8 9
unh. exc. 2 0

◆

| {z }
uxu1

✓ btnSave btnExport

click 8 9
unh. exc. 3 9

◆

| {z }
uxu2

cosineSim

⇣
ux

u1

���
btnSave

, ux

u2

���
btnSave

⌘
=

8 · 8 + 2 · 3p
82 + 22 ·

p
82 + 32

= 0.994

cosineSim

⇣
ux

u1

���
unh.exc.

, ux

u2

���
unh.exc.

⌘
=

2 · 3 + 0 · 9p
22 + 02 ·

p
32 + 92

= 0.316

UserExperienceSim (ux
u1 , uxu2) = cosineSim

✓✓p
68
9

◆
,

✓ p
73p
162

◆◆
= 0.989

Figure 5.26: Comparing different user experience aspects using cosine similarity.

by calculating the Euclidean norm of all its column vectors. Although user
experience matrices are typically sparse, this step is necessary in case multiple
event types were monitored at one location. In the last step, we apply the
cosine similarity measure [253] to the resulting user experience vectors. Cosine
similarity represents an estimation of the angle between two vectors:

Definition 8. The cosine similarity of two vectors a, b 2 Rn is defined as

cosineSim(a, b) :=

a · b
kak kbk (5.3)

Cosine similarity is a commonly used similarity measure in information re-
trieval, and has been successfully applied in content-based recommender systems
[230]. We apply cosine similarity to compare user experience snapshots since it
is well suited to identify commonalities and because it returns a normed result.
An alternative to cosine similarity would be the Euclidean distance metric.

Context-aware recommender systems [9] take into account additional con-
textual information, such as time or location of a user, when recommending
items. Portneuf captures the experience of a user with specific locations in
an application regarding contextual events. Consequently, apart from a general
comparison of users’ experience, the Portneuf user experience profile allows
for a context-sensitive user comparison based on selected event types or event
locations, which may be relevant in the particular context. Hence, Portneuf

is able to generate recommendations depending on the specific context.
Figure 5.26 illustrates with a simple example how context-sensitive recom-

mendations can be obtained. It shows the user experience matrices of two users
u1 and u2. Both users have a similar experience with the button “btnSave”, but
user u2 experiences significantly more unhandled exceptions than user u1. If

121



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback

























































Figure 5.27: Portneuf user feedback subsystem.

user u2 wants to give feedback on the “btnSave” button, the user feedback from
user u1 is a good candidate to search for existing feedback. On the other hand,
if user u2 wants to report an unhandled exception, the feedback from user u1 is
much less relevant.

5.3.3 User Feedback

Figure 5.27 shows the class model of the Portneuf user feedback system. Its
main purpose is to allow users to provide in situ feedback while using the
application and to link their feedback with the corresponding snapshot of their
user experience. Whenever a user provides feedback to the user feedback

manager, it queries the user experience profiler to create a user experi-

ence snapshot for the user in question. This snapshot represents the user

experience up to the current point in time. The user feedback manager

connects the created snapshot with the collected feedback and stores both in
the user feedback store. It is this combination between provided feedback
and underlying user experience which enables Portneuf to generate content-
based recommendations. Because user experience snapshots contain con-
text events, user feedback collected with Portneuf is context-sensitive.

122



5.3 Framework Architecture























 






















Figure 5.28: Portneuf recommendation subsystem.

5.3.4 Recommendation

Recommender systems have been successfully applied in various domains such
as recommendations for movies [137], financial services [97], websites [229], and
software components [241]. We distinguish four basic recommendation strate-
gies. Collaborative filtering [137] proposes items based on the information about
nearest neighbors: item preferences of users with a similar observed behavior
as the current user are exploited to infer recommendations, similar to word-of-
mouth promotion. Content-based filtering [229] analyzes the observed behavior
of the current user and recommends items with characteristics similar to those
of items the current user has already rated high. Knowledge-based recommender
systems [97] rely on knowledge about the user. For instance, a knowledge-based
recommender system for a shopping application could rely on the available item
assortment as well as marketing and sales knowledge. Finally, group recom-
mender systems [147, 193, 213] support human decision making by taking into
account factors such as the opinion of other group members, individual motiva-
tions, and personal preferences. Their goal is to achieve consensus among the
members of a group.

As shown in Figure 5.28, Portneuf creates recommendations of existing
user feedback, which is relevant for the user, whenever she is about to pro-
vide feedback. In the best case, these recommendations contain the feedback
the user wanted to provide. Otherwise, they might include similar feedback,

123



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback

which allows the user to explain her experience by commenting. Portneuf

implements two complementary recommendation strategies: content-based

filtering and collaborative filtering.
The content-based filtering strategy compares the current user’s experience

profile with user experience profiles attached to already existing feedback
from other users. It then recommends the user feedback with the most similar
user experience profiles, which the user has not yet seen.

The collaborative filtering strategy calculates user preferences by analyzing
their participation in existing collective user feedback. For instance, users who
voted for the same feedback have the same preferences regarding this feedback.
The strategy then recommends user feedback which users with similar prefer-
ences have reported or voted for, and which the current user has not yet seen.

The recommendation policy decides at runtime which strategy is suitable
based on the type of feedback the user is about to provide. The Portneuf

framework supports two types of user feedback: error reports and feature

requests. We assume that these feedback types require different recommen-
dation strategies, because of their differing semantics. With error reports users
refer to events which have happened, while feature request describe which func-
tionality is missing. We formulate the following hypothesis.

Hypothesis 5.3. Content-based filtering is most suitable to create recommen-
dations for error reports, while collaborative filtering is most suitable to generate
recommendations for feature requests.

In practice, both content-based filtering and collaborative filtering methods
have strengths and weaknesses [52]. The best known weakness is probably the
“ramp-up” problem [163], a term which refers to two different startup scenar-
ios. In the first scenario, recommendations need to be created for a new user.
Since calculating recommendations includes comparing a user’s preferences to
the preferences of other users, users with few or even no expressed preferences
are difficult to categorize. The second scenario is similar but refers to new items.
Items which have not yet been rated by a sufficient number of users are diffi-
cult to be recommended. While collaborative filtering is affected in both cases,
content-based filtering deals well with new items. However, before recommen-
dations can be generated with content-based filtering, typically models of the
users have to be learned. Portneuf deals with this requirement by utilizing
user experience profiles as fingerprints which allow the recommender system to
directly look up the most relevant items, independently from the user. Hence,
Portneuf overcomes the ramp-up problem for new users.

In order to compensate for the remaining weaknesses, Portneuf combines
both recommendation strategies to form a hybrid recommender system [52].
Then, recommendations are calculated using both strategies and combined fol-
lowing Hypothesis 5.3: Recommendations for error reports are determined by

124



5.3 Framework Architecture



































 





Figure 5.29: Portneuf analytics subsystem.

Algorithm 5.4 FeedbackRank.
Require: collective user feedback cuf.
1: % CollectiveReputationScore(cuf .getReporter())
2: for all social feedback sf 2 cuf do
3: �  sf .quantify()
4: % %+ �·CollectiveReputationScore(sf .getReporter())
5: end for
6: return %

weighting content-based filtering recommendations with 80% and collaborative
filtering recommendations with 20%, and vice versa for feature requests.

5.3.5 Analytics

Figure 5.29 depicts the Portneuf analytics subsystem. Its main purpose is
to estimate the impact of the gathered collective user feedback. For this
purpose, we introduce a new algorithm called FeedbackRank, which relies
on social feedback and reputation scores in order to calculate feedback
impact. It takes into consideration how much every contributing user is valued
by the community.

The FeedbackRank algorithm assigns every collective user feedback a
score that indicates how important in the user community that feedback is. As
illustrated in Algorithm 5.4, FeedbackRank estimates the reputation score

125



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback

Algorithm 5.5 CollectiveReputationScore.
Require: user u, factor ✏.
1: SV

u

 u.getIncomingSocialFeedback()

2: �  0

3: for all social feedback sf 2 SV

u

do
4: v  sf .getReporter()
5: if v 6= u then
6: SF

v

 v.getSocialFeedback()

7: �  sf .quantify()
8: � CollectiveReputationScore(v)
9: if � > 0 then

10: �  � + � · �/ kSF
v

k
11: end if
12: end if
13: end for
14: �  ✏ · �
15: return �

of the collective user feedback’s original reporter and adds the quantifi-

cation of the included social feedback, weighted by the reputation score

of the respective user who published it.
As described in Section 5.1.4, there are various methods for computing rep-

utation scores. Portneuf, uses the flow model based algorithm Collec-

tiveReputationScore (see Algorithm 5.5), which works similar to Google’s
PageRank [223]. The algorithm calculates the collective reputation score of a
user, which is defined as follows:

Definition 9. Let u be a user. Then let SF

u

be the set of social feedback

provided by user u and SV

u

the set of social feedback which was given on
u’s feedback (called u’s social value). Let further n

sf

=

��
SF

author(sf )

�� be the
total amount of social feedback given by the author of sf and " a factor used
for normalization. With |sf | we denote the quantification of social feedback sf
(e.g. +1 for upvote). Then, we define the collective reputation score of u as:

CRS(u) := "

X

sf 2SVu

|sf | · CRS(sf )

n

sf

The CollectiveReputationScore algorithm assigns each user the values
they obtained from other users, weighted by their reputation scores. The col-
lective reputation score of a user is divided evenly among the social feedback

she provided on other users’ feedback to contribute to their reputation score.

126



5.3 Framework Architecture





























































Figure 5.30: Simplified example of CollectiveReputationScore.

Similar to PageRank, CollectiveReputationScore is recursive, but can
be calculated starting with any set of reputation scores for all users and iterating
the calculation until it converges.

Figure 5.30 illustrates the calculation of the collective reputation score with
an example. User Pina has a score of 100, whose origin is not shown in this
figure. She has voted for a feedback by user Wolfgang and against one by user
Roberto. Consequently, user Wolfgang receives 50 points, while user Roberto

gets a negative value of �50 points. Because Wolfgang obtained an additional
positive vote by user Raffaela, who has a score of 36, his score adds up to
62. Also user Roberto received a positive vote by Raffaela, but in the end his
score only makes �38.

127



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback

5.4 Related Work

We discuss two areas of related work: research dealing with user feedback for
software, and existing systems that gather user feedback and capture user expe-
rience.

5.4.1 User Feedback Research

Schneider et al. [259, 260] propose ConTexter, an approach to collect chang-
ing end user requirements during system evolution. To capture the reactions
of end users on a system, ConTexter gathers feedback in context with mobile
devices. In order to focus the feedback, ConTexter allows system providers to
establish filters, which should guide end users when providing feedback. The
problem Schneider et al. address is similar to the one Portneuf deals with.
However, their solution differs from Portneuf in three major aspects. First,
feedback collected with ConTexter is anonymous, while in Portneuf the public
visibility of user feedback is the main enabler for the consolidation of feedback.
Second, in Portneuf the user community consolidates their own feedback us-
ing comments, ratings, and votings, while in ConTexter the system provider
defines filters with which users may tag their feedback. Third, ConTexter is de-
signed to support users of IT-ecosystems, such as airports or universities, while
Portneuf targets end users of software applications in general. Therefore,
ConTexter aims at capturing the physical context, allowing users to attach au-
dio or video recordings, while Portneuf focuses on events initiated by the user
(user interactions) or the software itself (application execution).

In an additional work, Gärtner and Schneider [109] propose a heuristic func-
tion in order to prioritize end user feedback. It takes into account quantifiable
features of feedback text and attachments that significantly influence its impor-
tance, while trying to avoid the incorporation of complex domain knowledge. In
a first evaluation, the authors could show that this heuristic yields helpful esti-
mates of feedback priority. Instead of using heuristic functions, the Portneuf

model enables the utilization of the user community’s collective intelligence to
prioritize feedback. The advantage of our approach is the obtained feedback
structure which also avoids duplicates.

Chilana et al. [66] present a tool called “LemonAid” that allows users to search
for help on web pages by selecting a UI element (e.g. label, link, or image) of
which they believe that it is relevant to their problem. In an initial study the
authors could show the feasibility of relating questions and answers based on
UI elements, which are essentially part of the context of use. This supports our
assumption that the context of use is helpful to estimate the relevance of user
feedback. The goals of LemonAid and Portneuf are similar. LemonAid aims
at connecting users who seek help with users who provide help, while Port-

neuf tries to connect users who made similar experience with an application.

128



5.4 Related Work

However, there are three major differences. First, Portneuf does not rely on
a user-based estimation of relevant content, but calculates relevance based on
an automatically gathered measure of user experience. Second, while LemonAid
only considers UI elements, we propose a more generic model, which can be
tailored to different applications and user groups. Third, LemonAid can only
provide help for UI related problems, while Portneuf is able to link users in
arbitrary yet similar situations.

Froehlich et al. [107] propose a framework called “MyExperience” to gather
feedback on users’ experience with mobile phones. To this end, the authors
combine passive logging of device usage, environmental sensor readings, and
active context-triggered user experience sampling. The results showed that the
system could help researchers or service vendors to better understand usage
contexts. Similarly, we claim that the use context provides means to capture
user experience, but in contrast to MyExperience, the Portneuf model aims
at supporting the impact analysis of feedback.

Özçelik Buskermolen et al. [216] explore the types of end user information con-
sidered useful by designers for early concept evaluations. The results indicate
that designers prefer elaborate feedback which indicates clear attitudes and mo-
tivations as well as feedback that reveals users’ past experiences. This supports
our approach to capture user experience and utilize it as grouping construct for
collective user feedback.

Ali et al. [8] suggest to design adaptive systems capable of “social adaptation”.
The term refers to a system’s ability to analyze user feedback and react to it
by changing its behavior, with the goal of always meeting users’ requirements
correctly and efficiently. To this end, the authors assume user feedback which is
not natural language based and therefore interpretable by the adaptive system.
Although this scenario is different from the one that drives our research, the
underlying assumption is the same: the wisdom of crowds can be exploited to
improve and evolve a system over time. Additionally, the notion of adaptive sys-
tems leads to an interesting question, namely how much control do developers
need when reacting to user feedback? In an extreme case, Portneuf could be
utilized to enable social adaptation based on common, natural language feed-
back.

5.4.2 User Feedback Systems

In recent years, systems capturing user experience and software usage and al-
lowing users to provide feedback have gained attention in practice, especially
for web sites. Several commercial services such as Usabilia4, AppTelemetry5,

4http://usabilla.com
5http://www.apptelemetry.com/en/feedback-feature.html

129



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback

or HeadsUp! User Engagement6 sell features which analyze how users move
through web pages and collect their feedback.

Social media enabled platforms like UserVoice [277] and GetSatisfaction [110]
allow users to collaboratively share new ideas and vote on existing suggestions
for new features. Bajic and Lyons [15] found that this collaboration focuses
users’ efforts and leads to more homogeneous feature requests. UserVoice and
GetSatisfaction even try to avoid duplicate feedback by analyzing the text writ-
ten by a user while she is providing feedback. However, this approach is not
equal to ours because of three reasons.

First, the comparison of user feedback is based on a syntactic natural language
analysis. However, natural language is highly ambiguous and different users may
therefore describe the same experience using different words (e.g. “button” in-
stead of “link”, “click” instead of “tap”, or “UI” or “form” instead of “view”). Sec-
ond, these platforms do not capture user experience. But research has shown
that feedback written by users typically lacks this information [298]. The user
experience collected by Portneuf can be symbolized and might be helpful for
developers in order to better understand the provided feedback. Third, the
platforms are not context-aware. This means that all user feedback is consid-
ered equal in all situations. On the contrary, Portneuf allows for weighting
particular user feedback more than other based on the particular context of use.

5.5 Summary

We have introduced Portneuf, a domain-independent model which supports
continuous user involvement by enabling proactive and context-aware recom-
mendations of user feedback based on users’ experience as follows:

• Portneuf defines and conceptualizes user experience. Because it is not
directly measurable and subjective when described by users, we summa-
rize factors which influence user experience and hence enable an indirect
measurement. In particular, the application use history and use context
belong to the major factors.

• The presented model also includes user feedback and relates it to user
experience. It defines collective user feedback, which groups feedback of
multiple different users around common experience. Collective user feed-
back captures the opinion of the user community as a whole and enables
a quantification of its impact.

• Portneuf derives the relevance of specific feedback for a particular user
in a given context by a comparison of the different user experiences. Based
on this relevance, Portneuf generates recommendations of existing user

6http://www.headsupuserengagement.com

130



5.5 Summary

feedback in order to proactively group different users’ feedback around a
common topic and to avoid the creation of duplicates.

• The resulting collective user feedback includes the transitive closure of all
related feedback, and thus provides means for quantifying the correspond-
ing impact of the described issue for the user community.

We have shown how the Portneuf model can be applied during three software
engineering activities, early design, system testing, and software evolution, and
instantiated it exemplarily for each of them. Moreover, we substantiated the
application of Portneuf to software evolution – the main focus of this disser-
tation – by describing a software framework that implements the Portneuf

model for software evolution. The framework solves the problems of developers
which we have discovered in Chapter 3 following a proactive approach. It auto-
matically captures users’ experience and creates feedback recommendations for
users based on the similarity of their experiences. Finally, it allows developers to
assess the impact of user feedback in a quantitative way. In the next chapter, we
describe the formative and summative evaluation of the Portneuf framework.

131



Chapter 5 Proactive and Context-Aware Recommendation of User Feedback

132



Chapter 6

Evaluation

«It is entirely possible that behind the perception
of our senses, worlds are hidden of which we are
unaware.»

— Albert Einstein

In the previous chapters, we described Portneuf, a proactive and context-
aware framework which groups user feedback according to users’ prior experi-
ence with an application. We described how Portneuf recommends existing,
relevant feedback to users to rate, vote for, or comment on, and showed how it
allows developers to assess the collective value of user feedback with the Feed-

backRank metric.
In this chapter, we describe the evaluation of our solution. In Section 6.1

we show the applicability and feasibility of our concepts. We prototypically
implemented the Portneuf framework for two different applications. In Section
6.2 we describe our evaluation setting, including questions, methodology, and
data. Section 6.3 summarizes the results of the evaluation. We describe how
users provided feedback with Portneuf and illustrate the resulting effects on
developers’ work with user feedback. We quantify the effects of Portneuf

on the amount of duplicate user feedback, describe how it facilitates impact
assessment, and collect emerging issues and improvement suggestions. Finally,
Section 6.4 summarizes our findings.

6.1 Framework Implementation

The evaluation of Portneuf consisted of two parts, a formative evaluation
and a summative evaluation. The goal of the formative evaluation was to test
the feasibility of Portneuf and to explore different recommendation strategies
in a controlled environment. The obtained results allowed us to improve the
framework before using it in a real-world setting. The goal of the final summative
evaluation was to analyze the user feedback collected by Portneuf for an
established application with a large user community.

133



Chapter 6 Evaluation

Figure 6.1: MOSKitt UML modeling tool.

6.1.1 Formative Evaluation

For the formative evaluation, we a implemented a vertical prototype of Port-

neuf within the FastFix project1. The overall goal of FastFix is to provide
software engineers with a “real-time” maintenance environment which increases
efficiency and reduces total cost. It aims at improving accuracy in identification
of failure causes and facilitating their resolution. The FastFix platform includes
a set of software tools to remotely monitor user environments which are able
to collect contextual information on application execution and user interaction
[219].

Prototype development consisted of two steps, the implementation of the
Portneuf framework for the FastFix platform, and the integration of the user
feedback functionality in a FastFix target application. All Portneuf frame-
work components except the monitoring subsystem can run separately from the
application, and are accessible for all users. The Portneuf monitoring sub-
system needs to run on the same machine as the application for which feedback
should be collected. We developed the Portneuf prototype in Java using OSGi
and Eclipse Rich Client Platform (RCP). The Portneuf user feedback func-
tionality was integrated in Prodevelop MOSKitt2, a UML modeling tool also

1http://fastfix-project.eu
2http://www.moskitt.org/eng

134



6.1 Framework Implementation

















 



























Figure 6.2: Deployment of the Portneuf framework for MOSKitt. Portneuf

components are shown in gray.

based on Eclipse RCP technology. Figure 6.1 depicts the MOSKitt user inter-
face.

Figure 6.2 illustrates how the Portneuf framework components are dis-
tributed between the target application MOSKitt and the FastFix client and
server. To monitor the application use context, the prototype uses sensors de-
veloped within FastFix. These sensors transfer observed events to the monitor-
ing component which we integrated in the FastFix client, a standalone proxy
application to collect local user data and send it to the FastFix server, which
represents the common back end. The remaining Portneuf components are
integrated in the FastFix server. Both sensors and user feedback library are
deployed via so called update sites – a plugin mechanism for RCP applications
which facilitates deployment and updates. As a result, both components can be
used not only with MOSKitt, but with arbitrary RCP applications.

Figure 6.3 illustrates the seamless integration of Portneuf into the MOSKitt
user interface. Users can provide feedback by selecting the corresponding menu
item. When users decide to provide feedback, they obtain recommendations of
existing user feedback which they can vote for or comment on. Figure 6.4 illus-

135



Chapter 6 Evaluation

Figure 6.3: Integration of Portneuf in MOSKitt.

trates the generated user feedback recommendations and exemplifies collective
user feedback.

The formative evaluation showed that Portneuf is feasible, as we were able
to implement the framework as specified, to integrate it in an existing real-
world application, and to generate recommendations for existing user feedback.
In addition, we made the following two observations, which allowed us to create
an improved version of the framework for the summative evaluation.

First, when generating user feedback recommendations, we observed that the
content-based recommendation strategy performed generally better than the
collaborative filtering strategy. We found that this result was due to the low
number of users who had tested the prototype, because the low amount of social
feedback they had provided was not sufficient to build user profiles. Since we
expected similar results in particular at the beginning of the summative evalu-
ation, we ensured that Portneuf created content-based recommendations as
fallback solution for feature requests. In addition, we made the hybrid recom-
mendation policy adjustable, so that the weight of recommendations obtained
by the content-based and collaborative filtering strategies could be modified if
needed.

Second, we tested the collaborative filtering strategy with two different met-
rics to calculate user similarity: the Euclidean norm and the Pearson correlation
coefficient [243]. While both metrics measure similarity, the Pearson coefficient
tends to give better results when the compared data is not normalized. Nev-
ertheless, we obtained better recommendations with the Euclidean norm, and
consequently used this metric for the summative evaluation.

136



6.1 Framework Implementation

Figure 6.4: Portneuf for MOSKitt: Example of a user feedback recommenda-
tion and collective user feedback.

137



Chapter 6 Evaluation

Figure 6.5: Integration of Portneuf in BetterTouchTool.

6.1.2 Summative Evaluation

The goal of the summative implementation of Portneuf was to gather collec-
tive feedback from a large user community, in order to measure and quantify
real-world effects and to evaluate the generated recommendations. To this end,
we developed a reusable, web-based version of the Portneuf framework using
Python in combination with a MySQL database to hold user feedback and user
experience snapshots. Further, we implemented a lightweight monitoring library
including six generic sensors, capable of observing the context of arbitrary Mac
OS X and iOS applications, as well as a user feedback library. Both components
can be easily integrated into arbitrary Mac OS X and iOS applications.

We integrated Portneuf into BetterTouchTool3, a desktop application for
Mac OS X which allows users to configure trackpad, mouse, and keyboard ges-
tures for arbitrary applications. BetterTouchTool has a large community with
more than 200,000 active users. In order to obtain tailored recommendation
results, two more application-specific sensors were added to the source code of

3http://www.boastr.de

138



6.1 Framework Implementation

Figure 6.6: Portneuf for BetterTouchTool: Example of a user feedback rec-
ommendation and collective user feedback.

the application4. Portneuf is integrated into BetterTouchTool since version
0.799, allowing users to provide in situ feedback as depicted in Figure 6.5. The
included Portneuf feedback library contains a simple user interface display-
ing the Portneuf web service results. Users of BetterTouchTool who want to
provide feedback select the corresponding menu item. The user interface then
shows up to 10 recommendations of existing user feedback generated by the
Portneuf web service. Portneuf explicitly encourages users to vote for or
comment on existing user feedback before creating a new entry. Figure 6.6 il-
lustrates the generated recommendations and shows a selection of the collective
user feedback.

End users are not the only group which may provide feedback in Portneuf.
Developers can react to the user feedback, for instance by commenting it. Such
back-feedback can be helpful to clarify misunderstandings or to ask for missing
information. Additionally, a functionality which allows developers to assign
visual tags to feedback was included. The goal of these tags is to allow developers
to deliver a quick message to all end users who utilize Portneuf. We included
9 different tags and additionally assigned a reputation score to each tag, as

4The complete list of sensors is depicted in Table B.1.

139



Chapter 6 Evaluation

Table 6.1: Developer feedback tags in Portneuf.

# tag reputation points

1 working on this 5

2 on todo list 4

3 on todo list (low prio) 2

4 needs more votes 0

5 solution in comment 0

6 cannot reproduce 0

7 not a bug 0

8 won’t change 0

9 not possible 0

Figure 6.7: Portneuf developer tag in BetterTouchTool end user feedback.

shown in Table 6.1. Whenever a developer assigns such a tag to a specific
feedback, the end user who authored this feedback gains the specified amount of
reputation points. The idea behind this mechanism is to create a strong feeling
of involvement among the end users. We hypothesize that this bridges the gap
between users and developers and represents an incentive for users, because they
see that their voices are not ignored. Figure 6.7 depicts an end user feedback to
which a developer tag was assigned. Moreover, we implemented a leaderboard
which shows the twenty users with the highest reputation scores. Leaderboards
are an essential method in the gamification movement, which is becoming more
and more popular in novel applications (e.g. Foursquare5) [79].

6.2 Evaluation Setting

Portneuf should facilitate developers’ work with user feedback by providing
tool support for its consolidation and the assessment of its impact. More specif-
ically, the goal of Portneuf is threefold. First, it should reduce the work
overhead for developers created by unstructured feedback which typically con-
tains numerous duplicates. Second, it should allow developers to assess as how
important reported feedback is considered by the community. It should thus

5https://foursquare.com

140



6.2 Evaluation Setting

provide a comprehensive, quantitative picture of the feedback impact, which
facilitates its prioritization. Third, it should bridge gaps between users and de-
velopers which typically deteriorate the benefits of user involvement for both
stakeholders.

The purpose of this summative evaluation is to test if Portneuf successfully
reaches its goal, and to get insights about emerging issues as well as suggestions
for future improvement. We first formulate the questions that this evaluation
will answer. Then, we describe the methodology we used to collect and analyze
the evaluation data. Finally, we present the actual evaluation data sets collected
to perform our analysis.

6.2.1 Evaluation Questions

The evaluation questions refine our RQ 6 and investigate if Portneuf increases
developers’ efficiency when working with user feedback. Specifically, we study
the effects of user feedback recommendation and impact assessment, and strive
for collecting emerging issues and improvement suggestions.

RQ 6.(a) User feedback recommendation describes to which extent user
feedback recommendations in Portneuf facilitate developers’ work with user
feedback. In particular, we investigate the following questions:

• Duplicates: Does Portneuf reduce the amount of duplicate user feed-
back?

• Effects: Which effects do recommendations have on the provided feedback?

• Quality : How relevant are the recommendations and which are their limi-
tations?

RQ 6.(b) Impact assessment describes if Portneuf assesses user feedback
impact in a way which is helpful for developers. In particular, we study the
following questions:

• Prioritization: Do developers regard the provided prioritization of user
feedback sensible and representative for the community?

• Impact : Do developers relate to the user feedback impact provided by
Portneuf?

RQ 6.(c) Issues and improvements summarizes emerging issues and sug-
gestions for future improvements. We investigate the following questions:

• Satisfaction: How satisfied are developers with Portneuf?

• Issues : Which issues were encountered and how could these be solved?

141



Chapter 6 Evaluation

Preparation Phase Data Analysis 
Phase 

• Draw sample of 
existing feedback 
• Determine number 
of duplicates 

•  Integrate PORTNEUF 
•  Introduce system to 
community 

•  Investigate gathered 
feedback 
•  Identify duplicates 
• Simulate 
recommendations 
•  Identify reasons for 
remaining duplicates 
• Apply improvement 

• Explore impact 
assessment quality 
•  Identify limitations 
of recommendations 
• Collect issues and 
assess developers’ 
satisfaction 

2 iterations 

Retrospective 
Phase 

interviews and statistics quasi-experiment and statistics 

Figure 6.8: Evaluation method.

In order to answer these questions, we evaluated Portneuf in the application
BetterTouchTool. The evaluation took place between October and December
2012. During this time, we worked closely together with the developers of the
application.

6.2.2 Evaluation Methodology

We employed two main methods to answer the evaluation questions, a quasi-
experiment [53] to measure the effects of Portneuf on user feedback, and
an interview to qualitatively assess the results as perceived by developers. We
used descriptive statistics to obtain quantitative evaluation results and test their
significance.

The goal of an experiment is to test which impact a specific treatment has
on a particular phenomenon. Controlled experiments control for other factors
which might influence the phenomenon by using a randomized design. To this
end, subjects are assigned randomly to either the experimental group or the
control group, the former of which receives the treatment, the latter of which
does not. In contrast, quasi-experiments use a nonrandomized design, typically
because random assignment is impossible [72]. In our case, we could not use a
randomized design since this would have required splitting the user community.
Since Portneuf relies on the user community phenomenon to consolidate feed-
back, this would have affected the dependent variables. Instead, we formed the

142



6.2 Evaluation Setting

control group by drawing a historical sample of the studied population, namely
user feedback for BetterTouchTool. The experimental group was formed by ap-
plying our treatment, i.e. Portneuf, to the user community and collecting the
emerging feedback. The principal dependent variable in our experiment is the
rate of duplicates among user feedback, as this measures the effort required by
developers to deal with user feedback.

Our evaluation methodology consisted of three phases: a preparation phase,
a data analysis phase, and a retrospective phase, as depicted in Figure 6.8.

6.2.2.1 Preparation Phase

The preparation phase served two purposes. First, to understand the status
quo of user feedback in the control group, i.e. the investigated system without
Portneuf. Second, to integrate Portneuf into the target software Better-
TouchTool, i.e. to apply the treatment, to kick off the evaluation period.

We selected a sample of 2,000 successive reports from existing user feedback,
which the company had received via email between July 2010 and September
2011. This feedback formed the control group. Because duplicate feedback was
not systematically tagged, we asked a BetterTouchTool developer to manually
work through the data set and mark duplicates. The obtained result served as
benchmark for the further evaluation of Portneuf.

Next, we deployed the Portneuf web service, and integrated the monitoring
and user feedback libraries into BetterTouchTool. After testing the system and
feedback functionality, Boastr released the Portneuf powered BetterTouch-
Tool (version 0.799) on 6 October 2012.

6.2.2.2 Data Analysis Phase

We split the data analysis phase in two iterative phases, lasting 4 weeks and 3
weeks, respectively. During both time frames, end users provided feedback about
BetterTouchTool using the integrated Portneuf framework. After each phase,
we collected the data from the experimental group in the form of a snapshot of
the accumulated feedback, and analyzed the data. We used the insights gained
after the first phase to apply small improvements to the Portneuf monitoring
component, and then released a version containing the changes.

Each data analysis phase consisted of the following steps. First, in order to
assess changes in the work overhead, we asked a Boastr developer to manu-
ally identify duplicates, so we could compare the resulting duplicate rate, which
represents the dependent variable in our experiment, to the amount of dupli-
cates obtained without Portneuf. To understand the reason for the remaining
duplicates, we then studied the recommendations which had been provided by
Portneuf to the reporters of these duplicates, and manually analyzed the
duplicated items. Last, we investigated the user involvement degree using de-

143



Chapter 6 Evaluation

Table 6.2: Evaluation data sets.

# data set time frame #feedback #users fpu fpd

DC historical feedback (control group) 14 months 2,000 1,576 1.27 4.65

D1 first evaluation period (part 1 of exp. group) 4 weeks 202 188 1.07 6.31

D2 second evaluation period (part 2 of exp. group) 3 weeks 119 109 1.09 5.67

DE complete evaluation period (experimental group) 7 weeks 321 288 1.11 6.07

scriptive statistics to explore the obtained error reports, feature requests, votes,
and comments in combination with the corresponding recommendations.

6.2.2.3 Retrospective Phase

In the retrospective phase, we explored the quality of the impact assessment and
feedback prioritization created by Portneuf. We further investigated remain-
ing questions which could only be answered by the Boastr developers. For
instance, we wanted to determine the helpfulness of the bidirectional commu-
nication channel in Portneuf which allows developers to ask for clarifications
directly and personally. Moreover, we identified cases where user feedback rec-
ommendations did not prevent duplicates in order to summarize limitations and
their respective reasons. Finally, we collected issues which were raised by the
developers during the evaluation period and interviewed them with respect to
their overall satisfaction.

6.2.3 Evaluation Data

Table 6.2 shows an overview of the evaluation data, which consists of three data
sets. Data set D

C

contains the control group, i.e. historical feedback, which
spans a time frame of 16 months, and includes 2,000 feedback reports from
1,576 distinct users. This makes around 1.27 reports per user and about 4.65
reports per day.

Data set D1 contains all feedback collected during the first evaluation period.
It spans 4 weeks and comprises 202 reports from 188 distinct users, leading to
on average 1.07 feedback per user and around 6.31 reports per day. After the
first evaluation period, we improved the monitoring component, so that users
worked with this new version during the second evaluation period. Data set
D2 contains all the feedback collected during the second evaluation period. It
spans 3 weeks and consists of 119 reports from 109 distinct users, leading to
on average 1.09 feedback per user and around 5.67 reports per day. Together,
our experimental group D

E

spans 7 weeks and comprise 321 reports from 288
distinct users, leading to on average 1.11 feedback per user and around 6.07
reports per day.

144



6.3 Evaluation Results

6.3 Evaluation Results

We first investigate the results of user feedback recommendations in terms of
created duplicates and interpret the occurrent effects. Next, we explore the
quality of Portneuf’s impact assessment algorithm. Last, we describe emerg-
ing effects from developers’ point of view and summarize issues and possible
improvements.

6.3.1 User Feedback Recommendation

Collective user feedback essentially depends on an effective way to bring together
otherwise separated users and their experiences and opinions. Consequently, the
main enabler for collective user feedback is generating relevant user feedback
recommendations. The goal of Portneuf is to reduce the number of duplicate
feedback using these recommendations.

Duplicates

To allow for a comparison, we first measured the amount of duplicates in the
control group D

C

. We found that 846 (42.3%) of the 2,000 reports we had
sampled were duplicates of 274 original reports. This means, if a report was
duplicated it led to around 3.09 additional reports. Next, we analyzed the
feedback obtained in the two evaluation periods. We found that of the 202
reports in D1 only 29 (14.35%) were duplicates. The resulting difference in the
duplicate rate is statistically significant (p < 0.001). We counted 21 duplicated
reports, leading to around 1.38 additional reports per duplicate. Data set D2,
which corresponds to the second evaluation period, contains 119 reports, of
which only 17 (14.29%) were duplicates. Again, the resulting difference in the
duplicate rate is statistically significant (p < 0.001). We counted 6 duplicated
reports, leading to around 2.83 additional reports per duplicate.

In order to compensate for variation of the duplicate rate during the time
period T = [t0, t!] ✓ R+

0 , we calculated the proportion �

T

between the definite
integrals of both duplicates and total feedback as follows. Let duplicates : R+

0 !
N+

0 and feedback : R+
0 ! N+

0 . For a given time t, duplicates(t) refers to the
number of duplicates at time t and feedback(t) denotes the total amount of
feedback at time t. Both functions are measurable. Thus, we may interpret
�

T

as the ratio between the areas under the graphs representing the amount of
duplicates and total feedback during T . It is calculated as follows:

�

T

:=

ˆ
t!

t0

duplicates(t) dt

ˆ
t!

t0

feedback(t) dt

, (6.1)

145



Chapter 6 Evaluation

End−user feedback without Portneuf

time

# 
fe

ed
ba

ck
, c

um
ul

at
iv

e

2010−10−01 2011−01−01 2011−04−01 2011−07−01

0
50

0
10

00
15

00
20

00

●●●● ● ● ●●●●●●●●●●●● ● ●●● ●● ● ●● ● ● ●●● ● ●● ● ●● ●●●

●

feedback
duplicates
releases

0.581 0.732

End−user feedback with Portneuf

time

# 
fe

ed
ba

ck
, c

um
ul

at
ive

2012−10−08 2012−10−22 2012−11−05 2012−11−19

0
50

10
0

15
0

20
0

25
0

30
0

● ● ● ●

●

feedback
duplicates
releases

0.8 0.83 0.91 − new sensors 0.912

Figure 6.9: End user feedback characteristics without and with Portneuf. The
black curve depicts the cumulative amount of feedback over time,
i.e. feedback(t). The red curve shows the cumulative number of du-
plicates over time, i.e. duplicates(t). Dots illustrate releases of Bet-
terTouchTool.

146



6.3 Evaluation Results

We obtained a value of �
DC = 0.389 for the control group D

C

, and a value
of �

DE = 0.128 for the experimental group D

E

. This means that users in the
experimental group created �DE

�DC
= 67.1% less duplicates than were made in the

control group.
Last, we averaged over the fraction of duplicates calculated for each data point

in D

C

and D

E

. For the control group D

C

we obtained a mean of D
C

= 35.7%

duplicates per feedback. In contrast, we obtained a rate of only D

E

= 11.2% in
the experimental group. A two-sample t-test and a two-sample Wilcoxon rank
sum test give strong statistical evidence for the significant difference between
the duplicates in the data sets D

C

and D

E

in terms of both means and medians
(p < 0.001). Figure 6.9 illustrates the results.

To determine the effect size of duplicate reduction, we calculated Cohen’s d

[68], which measures the strength of a phenomenon by indicating the standard-
ized difference between two obtained means. A value of d  0.2 represents a
small effect, a value of d = 0.5 represents a medium effect, and a value of d � 0.8

represents a strong effect [68]. To calculate the effect size, we estimated the dif-
ference between the means of the duplicate rates in D

C

and D

E

and divided it
by the pooled standard deviation �

p

[214]:

d =

D

C

�D

E

�

p

, with �

p

=

s
(kD

C

k � 1) �

2
C

+ (kD
E

k � 1) �

2
E

kD
C

k+ kD
E

k (6.2)

We obtained a value of d = 4.27, which denotes a strong effect. Descriptively,
this means that the average fraction of duplicates with Portneuf is 4.27 stan-
dard deviations below the average fraction of duplicates without our framework.
Note that we utilize a pooled standard deviation to give consideration to our
quasi-experimental setup, which does not guarantee that the populations from
which D

C

and D

E

were drawn are identical.

Effects

To understand the effects of recommendations on end users and the emerging
user feedback, we investigated how users interacted with Portneuf after hav-
ing obtained user feedback recommendations. To this end, we tracked users’
interactions with Portneuf throughout the evaluation period. Figure 6.10 de-
picts the results and shows the frequency of each interaction path among all
interactions.

We registered a total of 584 interactions during the evaluation period. During
321 (55.0%) interactions users eventually created new feedback. This feedback
corresponds to our evaluation data set D

E

. As shown in Figure 6.10, 46 (7.9%)
interactions led to the creation of duplicates, while in 275 (47.1%) cases, users
provided unique feedback. We found that in 9 (1.5%) interactions which led to

147



Chapter 6 Evaluation

User provides new 
feedback 

User votes for or 
comments on feedback User creates duplicate 

Yes: 321 (55.0%) No: 263 (45.0%) 

No: 275 (47.1%) 

New feedback Item was 
recommended 

Yes: 46 (7.9%), 
12 FR, 36 BR 

Yes: 9 
(1.5%) 
Recommendation 

ignored 
Recommendation 

insufficient 

No: 37 
(6.3%) 

Yes: 72 
(12.3%) 
Recommendation 

sufficient 
No intent to 
give feedback 

No: 97 
(16.6%) 

Yes: 94 (16.1%) 
63 V, 31 C 

No: 169 (28.9%) 

User has found 
concern New social feedback 

User accesses Portneuf and 
obtains recommendations 

Accesses: 584 (100%) 

!"# !$# !%# &"# &$# !'#

No effect 
Neutral effect 
Positive effect 

Figure 6.10: Effects of user feedback recommendations in Portneuf.

duplicates, users had simply ignored a correct recommendation. In contrast, in
37 (6.3%) interactions, users did not obtain a suitable recommendation. While
the duplicate rate significantly decreased after introducing Portneuf, we con-
clude that the observed rate might still be improved.

We further observed that 263 (45.0%) interactions did not lead to the creation
of new feedback. In the light of the reduced duplicate rate, we can argue without
loss of generality that without Portneuf a non-empty subset of these inter-
actions would have led to additional feedback and presumably more duplicates.
For instance, to reach the duplicate ratio of the historical sample, more than
58% of these 263 interactions would have to provoke duplicates. In 94 (16.1%)
cases users provided social feedback on existing reports, including 63 votes and
31 comments. We are confident to argue that most of these would have led to
duplicate feedback without Portneuf.

The remaining 169 (28.9%) interactions ended without any feedback. To
understand why the corresponding users had not provided feedback, we had in-
cluded a short dialog which asked the user if she found her concern, given that
she closes Portneuf without any further contribution. In 72 (12.3%) cases,
users answered that their concern was already described. We conclude that
these may be counted among the positive effects of user feedback recommen-
dations. In the other 97 (16.6%) cases users indicated that their concern was
not among the recommendations. Our interpretation of these cases is that the
corresponding users did not have the intent to provide feedback. In any case, the
recommendation did not have any effect during the corresponding interactions.

To summarize the effects of user feedback recommendations, we classify the
corresponding interaction results into three kinds of effects. With “positive ef-

148



6.3 Evaluation Results

content−based filtering collaborative filtering

0
5

10

N=385 N=33

re
co

m
m

en
da

tio
n 

ra
nk

Figure 6.11: Recommendation ranks in Portneuf.

fect” we denote that recommendations included relevant feedback. With “no
effect” we describe that relevant feedback was not recommended. Finally, with
“neutral effect” we denote all cases which could not lead to effects even if perfect
recommendations were given.

As illustrated in Figure 6.10, in 175 (30.0%) cases recommendations had a
clearly positive effect. They helped to avoid duplicates and provoked the cre-
ation of social feedback, which facilitates impact assessment. In only 37 (6.3%)
cases user feedback recommendation had no effect, meaning that users created
duplicates in spite of reading the generated recommendations. Finally, in 372
(63.7%) cases recommendations had a neutral effect. These cases describe sce-
narios which cannot be improved by user feedback recommendations.

Quality

In total, Portneuf generated 584 lists with recommended feedback during the
evaluation period. In 211 (36.1%) cases, users interacted with at least one of
the corresponding recommendations – by voting for (50 or 8.6%), commenting
(30 or 5.1%), or at least clicking on (197 or 33.7%) a subset of the items to read
their details. In total, users interacted with 418 recommended items, leading to
around 1.98 interactions per access. Most of these useful recommendations (385
or 92.1%) were created using content-based filtering, while only a small amount
(33 or 7.9%) using collaborative filtering. Figure 6.11 illustrates the distribution
of the useful recommendations in terms of their ranks on the recommended items
list. On average, collaborative filtering led to higher ranked recommendations

149



Chapter 6 Evaluation

Original Feedback 

Duplicate 3 Recommendation 1 

Recommendation 2 

Recommendation 3 

Recommendation 5 

Recommendation 6 

recommendations 
provided by PORTNEUF 
to the reporter of 
duplicate 3 

duplicates 
Duplicate 4 

Duplicate 5 

Duplicate 2 

duplicates 
in DE 

User Experience 
Snaphsot 

User Experience 
Snaphsot 

Duplicate 1 

Figure 6.12: Analysis of ineffective Portneuf recommendations.

(mean rank 1.76) than content-based (mean rank 3.88), but it was utilized by
far less often to generate recommendations.

Mean average precision [191] is frequently used in information retrieval to
measure the quality of systems that return multiple results to a query. It provides
a single value which represents the quality of the results based on relevance and
rank in the result list. The mean average precision for the recommendations
generated during the evaluation period equals 44.2%. However, the goal of
Portneuf is to identify the one item, which the current user is about to report –
if it exists – and recommend it to the user. Therefore, measuring usage prediction
quality expressed by precision and recall is less meaningful in our case [239],
since only a small set of recommended items is relevant to the user. Instead,
we calculate the hit-rate (HR), a utility-based ranking measure proposed by
Desphande and Karypis [78]. It measures how often a recommender system was
able to recommend the right item among the total number of queries:

hit-rate (HR) :=

Number of hits
n

(6.3)

An HR value of 1.0 indicates that the right item was always recommended,
whereas an HR value of 0.0 denotes that not a single right item was recom-
mended. To calculate the hit-rate for Portneuf, we omitted the 372 neutral
cases where new feedback was provided or users did not intent to provide feed-
back, since there was no right item to be recommended. In 175 of the remaining
212 cases, Portneuf created the right recommendations. Consequently, the
hit-rate of Portneuf equals 175

212 = 82.5%.

150



6.3 Evaluation Results

missing sensor
recommendation ignored 
insufficient sensor data
inappropriate scenario
other

D1

55.2% 17.2% 6.9% 17.2%

16 5 2 5 1

D2

23.5% 23.5% 11.8% 23.5% 17.6%

4 4 2 4 3

DE

43.5% 19.6% 8.7% 19.6% 8.7%

20 9 4 9 4

Figure 6.13: Reasons for duplicates in Portneuf.

To further investigate the quality of user feedback recommendation in Port-

neuf and identify its limitations, we analyzed the reason for each duplicate in
the evaluation sets as follows.

First, we looked up the original report which had been duplicated. We then
studied the recommendations which the user who created the duplicate had
obtained, as illustrated in Figure 6.12. If the original report was among the
recommended items, the user had ignored it – either because she did not read
the recommendations or because she did not recognize her concern in the rec-
ommended items.

To identify the reasons for the remaining duplicates, we compared the user ex-
perience snapshots of duplicate and original feedback. The results are depicted
in Figure 6.13. We found that after the first evaluation period a plurality of du-
plicates (55.2%) were due to missing sensors. Specifically this means that user
experience snapshots did not include events which would have been necessary to
allow the content-based recommendation strategy within Portneuf to create
appropriate recommendations. For instance, one specific error report described
that BetterTouchTool would always obtain the window focus when the system
woke up from sleep. However, no sensor monitored the system sleep state, with
the result that this error report ended up duplicated several times. After ana-
lyzing the duplicates from the first evaluation period, we identified two missing
sensors and implemented them so that they could be used in the second evalua-
tion period. As shown in Figure 6.13, the amount of duplicates which were due
to missing sensors dropped to 23.5% during the second evaluation period.

151



Chapter 6 Evaluation

Similarly, 8.7% of the duplicates were due to insufficient sensor data, mainly
because of two reasons. First, when users provided feedback shortly after updat-
ing BetterTouchTool to the version containing new sensors, there was no time
to collect enough relevant events. Second, if users reported problems not when
they occurred but instead postponed their feedback, the corresponding events
were outdated. Since user experience snapshots underlie a deliberate aging pro-
cess, the importance of relevant events decreases during the further use of the
application. Although user experience aging leads to problems in border cases,
it is necessary to be able to identify relevant events in the current context.

We found that 19.6% of all duplicates were created because the particular sce-
narios were not appropriate for content-based user feedback recommendations.
At the same time, we observed that collaborative filtering did not perform well
due to the “ramp-up” problem [163]. Since collaborative filtering essentially com-
pares users’ preferences, users with few or no expressed preferences – i.e. votes
or comments – are difficult to categorize. During the short time frame of Port-

neuf’s evaluation, only 224 votes and 150 comments had been provided by 207
users in total. We observed around 1.91 votes and 1.19 comments per user – not
enough to derive significant user preferences.

The remaining 8.7% of the duplicates were due to different reasons, including
errors for which sensors would be difficult to implement and very special feature
requests. For instance, a user reported that her settings were lost after each
update. A different user requested a feature to disable mouse acceleration for
specific applications.

6.3.2 Impact Assessment

To assess to which extent developers agree with the prioritization of user feed-
back estimated by Portneuf, we asked Boastr to create a prioritized list of
the most important user feedback in D

E

. Their prioritization had to reflect the
importance of user feedback among the user community. Then, we utilized the
FeedbackRank algorithm introduced in Section 5.3.5 to generate a prioritized
list of user feedback utilizing the quantitative information stored in collective
user feedback. Last, we compared both lists by calculating the average precision
of FeedbackRank.

We tried different values for the quantification of votes and comments, as
well as for the normalization constant ✏ in the utilized ReputationScore

algorithm. The normalization constant corresponds to a decay factor, which
determines how fast the influence of votes and comments decreases along paths
in the transitive closure of social feedback. We obtained the best result when
assigning a value of 2 for both votes and comments, and a value of ✏ = 0.1 for
the normalization constant.

Table 6.3 shows the results with a retrieval cutoff after the top 15 items.
It illustrates that, as expected, votes are an important factor when assessing

152



6.3 Evaluation Results

Table 6.3: Evaluation of impact assessment.

FeedbackRank feedback title dev.rank. votes

6.46 Four Finger Double Tap 3 19

5.55 Two Finger Tap on Trackpad? 1 9

4.67 Volume swipe! 2 10

3.99 Double Tap 4 14

3.91 bttfeedback:// links not working in Chrome – 0

3.89 Hangs/crashes after sleep or switching users 9 7

3.42 4 finger – 6

3.03 Dictation mouse shortcut 8 6

2.96 Hide the menubar/taskbar icon – 3

2.91 Fit windows to new screen size 6 8

2.84 4-Finger Taps register twice 11 6

2.83 Move/resize windows w/ keyboard – 7

2.65 Move window to next/prev desktop 10 10

2.64 Center Window - 1/4 screen – 7

2.60 CPU Usage at 95% 5 4

feedback impact among the user community. We calculated the average precision
[191] of the results obtained by FeedbackRank by comparing them to the list
assembled by Boastr. We obtained a value of 76.1%, which suggests that
FeedbackRank provides a valuable estimation of what is important to the
community from the developers’ point of view.

To understand this perspective more clearly, we showed the result to a Boastr

developer. She confirmed that the ranking results are sensible, but admitted
that clearly distinguishing the importance of some recommended items is not
straightforward. In fact, according to her, all feedback contained in Table 6.3
was important. She also hypothesized that FeedbackRank’s helpfulness will
increase over time and with the size of a software project, since more feedback
and more features complicate the kind of estimation the algorithm supports.

6.3.3 Issues and Improvements

6.3.3.1 Satisfaction

After the data analysis phase, we interviewed a Boastr developer to understand
if Portneuf met developers’ demands. The developer assigned Portneuf the
best grade on a 5-point Likert scale explaining that she was very satisfied with
the system. Two effects were perceived particularly positive: reduced work
overhead and more efficient involvement of the user community.

153



Chapter 6 Evaluation

Reduced Work Overhead Portneuf reduced the overhead for working with
user feedback in two ways. First, it introduced collective user feedback, which
significantly reduced the amount of duplicates, provided for the consolidation
of otherwise scattered feedback, and enabled the collection of the various opin-
ions and volunteered resources of multiple end users. The Boastr developer
reported that end users regularly commented on existing feedback instead of
providing new feedback from scratch. She explained that in case of bug reports,
this often led to additional information which helped to solve the issue:

“We recently encountered a bug where the software would simply
crash, which was reported by a user running an outdated OS ver-
sion. But when we replied that we think it would be due to this
old version, other users commented that they had the same problem
despite running the current version. In the past, combining these
different reports would have been much more difficult. Now, we had
one thread with the problem described at the top and different per-
spectives by the users below.”

Second, Portneuf reduced the amount of effort needed to assess the impact
of user feedback. On the one hand, collective user feedback by itself accounts
for this improvement, since it contains otherwise scattered items. The developer
stated that users voted for features of which the company would have never
thought: “If these users would have written mails distributed over a longer time,
as in the past, I cannot imagine that this feature would have been implemented.
We would have needed much more efforts in order to assess these kinds of re-
quests.” On the other hand, Portneuf’s FeedbackRank allows for an on
demand prioritization and assessment of the most important feedback according
to the user community, which can be helpful as starting point for work planning
meetings and roadmap decisions.

Increased Involvement Efficiency When asked if it was helpful to be able
to turn to specific end users in order to ask for clarifications, the developer
agreed but stated that this was also possible before. She underlined that the
really important improvement lies in the efficiency of the communication with
Portneuf:

“It was often the case that end users do not answer any more, if you
reply to their feedback per mail. With Portneuf, even a different
user might answer, for instance to prove if the issue has disappeared.
So, the real advantage is that we can selectively communicate with
the part of the community which is interested in or affected by a spe-
cific issue rather than only with a single user or the whole audience.”

The developer was confident that end users will feel more involved with Port-

neuf: “I am sure that the users now have the impression to be closer to the

154



6.3 Evaluation Results

developers. For instance, since they always have the same image and username,
and also because they get scores for what they do.” Last, she pointed out that
Portneuf enables a more efficient and clearer overview of the feedback by the
whole user community.

6.3.3.2 Issues

During our evaluation, we collected the following suggestions for further im-
provement of Portneuf.

Remaining Duplicates Although Portneuf is able to significantly reduce
duplicate user feedback, there is still room for improvement. We collected four
main open issues whose resolution could help to further avoid duplicates. Three
are of technical nature and regard user feedback recommendation, while the
fourth is non-technical.

First, additional sensors could further improve the content-based recommender
system. In theory, sensors should evolve as the system does, since they need to
capture new kinds of user experience. In practice, the plurality of sensors could
be generic, but the types of events must be dynamically extendable. Portneuf

guarantees this extensibility by providing a public event interface, which can
be specialized by sensor developers. After the first evaluation period, we had
identified two important events which were not yet monitored by Portneuf,
because we had compared user experience snapshots to identify the reasons for
specific duplicates. Accordingly, we implemented the missing sensors and de-
ployed a new version of Portneuf. However, the effect of these new sensors
only appeared after the next duplicate, because the original feedback did not
contain the essential events and was therefore not considered similar by the
recommender system.

Second, as expected, feature requests can not be simply deduced by comparing
past events. Therefore, content-based recommendation is not suitable to avoid
duplicate feature requests. We did not collect enough user preferences during
the evaluation to be able to generate recommendations based on collaborative
filtering. Although the evaluation period did only last for 7 weeks, this issue
could also be present after a longer time. Motivating users to provide social
feedback is therefore important.

Third, we observed that user experience aging affects the recommendation
performance. The effect is positive, as the events’ age is one of the determining
characteristics for their relevance. However, snapshots might get outdated when
users do not report their concerns promptly. Portneuf is designed to support
in situ feedback, which includes reporting where and when the concerns occurs.
However, further research could be necessary to develop triggers which might
identify problematic situations automatically and suggest to provide feedback
at a convenient time.

155



Chapter 6 Evaluation

Last, we found that the user feedback title is crucial. In several cases users
did not recognize their concern in the titles they read while browsing the rec-
ommended items. The reason was almost always that these titles were unclear
or too unspecific. When asking Boastr how to deal with such cases, they sug-
gested that developers should be able to edit user feedback titles, in order to
clarify them.

Performance and Scalability During the 7 weeks evaluation period, Port-

neuf accumulated over 200,000 events in over 10,000 user experience snapshots.
Although BetterTouchTool has a large user audience (> 200,000), performance
and scalability are definitely issues for the applicability, since there are even
larger communities and usage should span longer periods. Currently, it takes
about 4.8 seconds before Portneuf provides a recommendation. This includes
the time to upload a snapshot over the internet, to compare it with the exist-
ing snapshots, and obtain the most relevant candidates. While this time is still
acceptable [205], it might increase during further use, since more existing snap-
shots have to be analyzed. Therefore, it is worthwhile to investigate heuristics
and special indexes which might reduce the time needed for the comparison, or
to discard older snapshots to save calculation time and space.

Collaborative Filtering and End-User Motivation As discussed above, col-
laborative filtering depends mainly on expressed user preferences – i.e. social
feedback such as votes and comments. During our evaluation, Portneuf was
not able to accumulate enough social feedback to make reliable predictions about
the preferences of users who requested new features. The underlying issue is that
users are not motivated enough to provide social feedback. Currently, their only
incentive is – among helping the developers – the list of the most important
users for the community, where their name might appear. There is still room for
increasing the incentive to contribute, for instance by introducing real benefits
or further gamification elements.

Missing Developer Dashboard During the retrospective interview with the
Boastr developers, we found that one important improvement for Portneuf

is a comprehensive developer dashboard. To further support working with user
feedback, developers need an administrative tool which visualizes the collected
feedback and its impact, and facilitates daily tasks such as reviewing new feed-
back, assigning tags, and communicating with end users. Further, it should be
possible to connect Portneuf with internally used issue trackers, to allow for
an end-to-end software evolution workflow. Last, we found that user experience
snapshots contain valuable diagnostic information which can be very helpful to
understand what users did before errors occurred and eventually what led to
the corresponding errors. However, currently there is no straightforward way

156



6.4 Summary

to analyze these snapshots and the enclosed events rather than reading and
comparing them manually. We claim that visualizing this information and sup-
porting comparisons, for instance by “user experience snapshot diffs” can help
to identify missing sensors, to understand errors, and to fix error causes.

6.4 Summary

In this chapter we described the evaluation of the Portneuf framework. We
tested two main concepts, proactive and context-aware recommendation of user
feedback based on users’ experience, as well as impact assessment based on
collective user feedback. Our findings can be summarized as follows:

• We implemented the Portneuf framework for two different applications
and successfully developed sensors capable of monitoring numerous user
interaction and application execution events. The captured user expe-
rience could successfully be utilized to generate relevant user feedback
recommendations. This shows the feasibility of our concepts.

• Portneuf increases developers’ efficiency when working with user feed-
back in three ways.

– It significantly reduces the amount of duplicates among user feed-
back by over 67%, which is a strong effect. The main enabler of our
approach, content-based recommendations based on monitored user
experience, has a hit-rate of 82.5%.

– Portneuf allows for a more efficient impact assessment. On the
one hand, collective user feedback collects otherwise scattered items
and allows developers to quickly overview the whole community in a
structured way. On the other hand, FeedbackRank allows for an
on demand prioritization of the most impactful feedback in the user
community, and provides a starting point for work planning meetings
and roadmap decisions.

– The framework enables a more efficient user and community involve-
ment. In particular it allows developers to selectively and bidirection-
ally communicate with the part of the community which is interested
in or affected by a specific issue.

• Boastr decided to keep using Portneuf as their primary user involve-
ment solution, as they are very satisfied with the results. In cooperation
with them we have collected emerging suggestions for improvement, such
as how to further reduce duplicates, increase performance and scalability,
and provide a dashboard for developers.

157



Chapter 6 Evaluation

The evaluation of Portneuf is positive, and the results are promising. Devel-
opers benefit from Portneuf because it allows them to work more efficiently
with user feedback. Also users benefit from the framework as their voices are
more likely to be heard.

158



Chapter 7

Conclusions and Future Work

«There is no reason anyone would want a com-
puter in their home.»

— Kenneth Olsen, founder of Digital Equipment
Corporation (1977)

The goal of user involvement is to improve the usefulness of a system by
understanding the needs and expectations of users. Like software development
itself, user involvement should not end with the delivery of the system, but
accompany and safeguard its evolution over time.

However, both hardware and software systems underwent fundamental changes
over the last decades, and as a result also the actual users changed from en-
gineers with special scientific requirements to “normal” people with manifold
needs. Moreover, software systems have become part of our everyday life, and
the mobile and ubiquitous devices we interact with have added an additional
layer of diversity to the various application scenarios that software engineering
and evolution has to deal with.

At the same time, it was never as important as now for software companies
to meet their end users’ expectations. On the one hand, free and open source
competitors lurk at every corner, finding more and more supporters and gain-
ing industrial relevance. On the other hand, end users themselves are getting
more knowledgeable and exigent regarding the tools they want to use, and the
quality they ask for. Todays’ users grew up with high-speed internet, highly re-
active, touch-based, natural user interfaces, context-aware software, and sensor-
equipped, ubiquitous devices.

The questions is now, how can we as software engineers deal with these de-
manding people, who eventually pay for the systems we develop and for their
applicability in an ever-changing environment? How can we give consideration
to this new attitude towards our users?

The first step in this direction has been made by Boehm [41], who equipped us
with an iterative development process that allows for continuous improvement
which is more than necessary in current software engineering projects. Agile

159



Chapter 7 Conclusions and Future Work

development processes like Scrum [261] and XP [21] have provided for the next
step by embracing change and narrowing the gap between developers and users.
We claim that now it is the turn of user involvement to make a next step –
towards a systematic and continuous flow of information between users and
developers.

In Chapter 3, we found that developers appreciate post-deployment user feed-
back as it helps to improve software quality and to identify missing features. But
at the same time giving consideration to their opinions and expectations is diffi-
cult – mainly because the associated tasks require high reading, comprehension,
and structuring efforts, in particular due to the high quantity and low quality
of user feedback and since feedback is scattered across several communication
channels.

Our approach to solve these issues is Portneuf – a framework that proac-
tively consolidates user reports into collective user feedback by recommending
relevant existing items based on a comparison of users’ experience. By imple-
menting Portneuf and evaluating it with a commercial application and a large
number of real users, we could show that it has a real impact.

In this chapter, we draw conclusions from our work and emphasize questions
which we consider as worthwhile to be researched in future. We summarize the
contributions of this dissertation and pinpoint its implications (Section 7.1) and
limitations (Section 7.2). Finally, we illustrate a research agenda covering topics
and questions which emerge from our work (Section 7.3).

7.1 Contributions

With this dissertation we made three major contributions which enhance the
body of knowledge on user involvement and tackle the identified problems. First,
we provide empirical evidence on the status quo and desired state of user in-
volvement during software evolution. Second, we describe a solution framework
which we derive from a grounded theory on continuous user involvement. Third,
we provide a reference implementation and detailed evaluation of the proposed
framework.

7.1.1 Status Quo Assessment

We described the status quo of user involvement in research (RQ 1) and in
software evolution practice (RQ 2). Our contributions can be summarized as
follows:

1. During our literature review in Chapter 2 we found that user involvement
is an established research field which includes various methods. However,
due to the fundamental progress of hardware and software systems, the

160



7.1 Contributions

distance between developers and users is steadily increasing, while at the
same time users are becoming more demanding, knowledgeable, and ex-
troverted. Application distribution platforms and mobile devices make
it nearly impossible to know the actual users or the use context of soft-
ware before actually delivering it. Yet there is only little research on how
post-deployment user feedback influences software development and which
benefits and challenges it provides. We also found that cost and benefit of
user involvement determine its applicability in practice, since resource con-
straints often do not allow companies to employ effective user involvement
methods.

2. In Chapter 3 we reported on an empirical case study [218] which we con-
ducted with software professionals, in order to analyze the current practice
of user involvement during software evolution, specifically for software with
large user audiences. Our contribution spans the following three aspects:

a) We identified a need for user feedback. We found that developers ap-
preciate user feedback since it is helpful to improve software quality,
to identify missing features, and to gather real-world usage data. On
the other hand, users frequently provide feedback over different feed-
back channels. Their public feedback may apply pressure on software
companies.

b) We identified serious problems in current user involvement practice.
We found that developers need to analyze what users write, in order
to be able to react on user feedback. However, feedback is typically
written in natural language, might have poor quality, and can in-
clude contradictions. Further, developers typically need to estimate
feedback impact manually and consequently spend high effort on this
assessment. As a result of these problems, developers often ignore
feedback, simply sticking with their product roadmaps and develop-
ment plans.

c) We collected main requirements for user involvement tool support.
In particular when feedback volume is high, developers need tools to
consolidate, structure, analyze, and track user feedback. Grouping
and counting similar or duplicate feedback and assessing feedback
impact are especially important features.

7.1.2 Continuous User Involvement Framework

We established the theoretical foundations of our solution by deriving a grounded
theory [111] on continuous user involvement which relies on user communities.
To this end, we studied two phenomena in Chapter 4. On the one hand, we
explored regularities in the communication between users and developers in open

161



Chapter 7 Conclusions and Future Work

source communities [221] in order to understand how these two groups should
be interweaved (RQ 3). On the other hand, we investigated how users currently
provide feedback in application distribution platforms in order to understand if
and how user feedback can be consolidated (RQ 4). Our contributions can be
summarized as follows:

1. We showed the feasibility of user involvement relying on user communities.
We found that users are willing and able to provide helpful feedback to
developers when they are convinced that it improves the software they use.
In open source communities boundaries between users and developers are
low, and social media which allow both users and developers equally to ex-
press their opinions, seem to help further dissolving such boundaries. We
found that users and developers frequently discuss about requirements, im-
plementation, and community aspects. Developers on the one hand report
about their recent development activities to communicate their project
work to a broad user audience. Users on the other hand have their com-
munication peak time shortly after new versions are released and report
about their experiences with the software.

2. We identified regularities in user feedback which allow for its consolidation.
We found that commercially relevant user feedback channels, such as appli-
cation distribution platforms only allow for transactional communication.
Similar as in open source communities, users frequently provide feedback
particularly shortly after new releases, but this feedback is shorter and its
quality lower. Users often include maintenance relevant shortcomings in
their feedback and request improvements and additional features. Specifi-
cally, they share their experiences with the application, but typically only
in positive feedback. We concluded that this reduces the likeliness that
developers will be able to improve applications from such feedback alone.

3. We identified four key factors for successful continuous user involvement
during software evolution, namely the personal involvement of users, bidi-
rectional communication channels, the promotion of user communities, and
the automated capturing of user experience.

We then substantiated these theoretical solution concepts into Portneuf – a
context-aware and domain-independent model for the consolidation and prior-
itization of user feedback which harnesses the user community to group user
feedback in a proactive way, while increasing its overall quality (RQ 5, Chapter
5). Our contributions can be summarized as follows:

1. We defined the context-aware and domain-independent Portneuf model
which avoids the creation of unstructured, duplicate feedback by proac-
tively recommending existing relevant feedback to users, which they can

162



7.1 Contributions

rate, vote for, or comment on instead of creating feedback themselves. We
formalized and conceptualized user experience – the enabling concept of
this approach – and showed how it can be indirectly measured by mon-
itoring events during application use. We further defined collective user
feedback, which groups feedback of multiple users by their common expe-
rience. Because it captures the opinion of the user community as a whole,
this enables a quantification of feedback impact.

2. We showed the applicability of the Portneuf model to three phases of a
typical software engineering lifecycle, namely early design, system testing,
and software evolution.

3. We provided a reference software framework which implements the Port-

neuf model for software evolution. We illustrated how to automatically
capture users’ experience and described an algorithm that creates feedback
recommendations by calculating the similarity of this experience. Finally,
we introduced the FeedbackRank algorithm, which allows developers to
assess the impact of collective user feedback in a quantitative way.

7.1.3 Implementation and Evaluation

We evaluated the Portneuf approach and framework in Chapter 6 by testing
its two main concepts (RQ 6), proactive and context-aware recommendation of
user feedback based on users’ experience as well as impact assessment based on
collective user feedback. Our contributions can be summarized as follows:

1. We showed the feasibility of our approach by providing a reference imple-
mentation of the Portneuf framework for two different applications. We
were able to develop sensors to monitor various user interaction and appli-
cation execution events. The captured user experience could successfully
be utilized to create relevant user feedback recommendations.

2. We provided empirical evidence that Portneuf increases developers’ ef-
ficiency when working with user feedback. We showed that Portneuf

significantly reduces the amount of duplicate user feedback by over two
thirds and that the main enabler of our approach, user feedback recom-
mendations based on user experience is working as expected. Moreover,
we could show that collective user feedback and FeedbackRank allows
for a more efficient impact assessment of user feedback.

Our evaluation shows that developers benefit from Portneuf since it allows
them to work more efficiently with user feedback, while users benefit because
their voices are more likely to be heard.

163



Chapter 7 Conclusions and Future Work

7.2 Limitations

Our approach has three limitations, which result from our focus on observable
events, specific user involvement cultures, and incremental changes.

Unobservable Events Portneuf derives user experience from events ob-
served while a user interacts with an application. A prerequisite of this approach
is that events which determine user experience are observable. For the purpose
of this dissertation we concentrated on interactive software. Part of users’ ex-
perience with interactive software is by definition observable, as it includes the
interactions carried out by the users on the user interface [140]. The correspond-
ing response in the dialogue [55], the application’s execution, can be assumed to
be observable without loss of generality, since in theory it is always possible to
create events directly in the source code.

In practice, however, there are events which are not or not yet observable.
They range from obvious limitations like the user’s state of mind to more re-
alistic and relevant constraints such as sandboxing [114] which does not allow
software like sensors to access applications outside of their runtime environment.
However, the question to raise is what do we need to observe in order to be able
to compare user experience? Unfortunately this question cannot be answered in
a general way, as it strongly depends on the application at hand.

One of the strengths of the Portneuf framework is the generality of the
monitoring approach and the generic design of user experience. As a result,
Portneuf is application and technology independent. With this design we
provide for adaptability, extensibility, and portability, but within the scope of
practically observable events.

No User Involvement Culture This work provides a practical solution to
problems that occur if developers need to work with a high volume of end user
feedback. But not all companies suffer these problems. We can think of two
main reasons.

First, there might be no or not enough feedback. There are companies which
are not interested in user feedback as a driving force of improvement, or at least
they don’t gather feedback actively. A prominent example is Apple. Apple’s
former CEO Steve Jobs pinpointed their position in an interview 1989: “You
can’t just ask customers what they want and then try to give that to them. By
the time you get it built, they’ll want something new.” [150] Similarly, there are
application domains where end user feedback is not applicable, such as aircraft
design or nuclear power plants. However, we claim that Portneuf might still
be of benefit in such cases. As we have demonstrated in Chapter 5, the user role
is by no means limited to that of an application end user. During early design
phases, usability tests might be necessary to finalize product design. Shortly be-

164



7.3 Future Work

fore a major release, a software product needs to be extensively tested in order to
avoid shipping buggy software. Independently of the concrete scenario, Port-

neuf provides means to consolidate and structure large amounts of feedback on
executable software, be it customers’ feedback on early executable prototypes or
system testers’ feedback on a potentially shippable product increment [261]. To
increase incentives for users to provide feedback remains as challenging task for
future research.

Second, companies might not want user feedback to be public or don’t want
to bias their users with other users’ feedback. In our empirical study of user
involvement practice described in Chapter 3, we found that there are companies
which interact with their users in an almost cooperative way. In particular,
if end users themselves are software professionals this might be the case more
frequently. We have presented Portneuf as online platform, which allows users
to vote for, rate, and comment on existing feedback of other users. But there
might be cases where such a platform infringes users’ privacy or restricts their
creativity. We claim that Portneuf can still provide valuable benefits in such
scenarios. On the one hand, monitored events – when symbolized – can lead to
additional insights on how to reproduce and how to solve errors. On the other
hand, Portneuf can also be used reactively and internally: Users can provide
feedback which is enriched by user experience snapshots without interacting with
other feedback. At any given time, developers can then use Portneuf on the
accumulated set of feedback. The framework goes through this feedback one by
one and repeatedly generates a list of recommendations based on the previously
analyzed feedback, similar to a simulation. As a consequence, a developer only
needs to read the recommended items and mark duplicates if she identifies them.
Thus, in this scenario Portneuf becomes a feedback triage support system and
will still reduce developers’ required efforts.

Fundamental Changes Portneuf supports a critique based approach to
software improvement, which contains three steps: deployment, use, and feed-
back. Consequently, Portneuf requires executable software, which users can
obtain, use, and then provide feedback on. Such an approach is more suitable
to discover incremental improvements and single missing features (cf. IKIWISI,
[39]), than to call for paradigm breaks and revolutionary innovation [65, 282].
On the other hand, whenever the software company itself decides for a paradigm
break, user feedback volume will experience a peak. In this case, Portneuf is
the suitable tool to handle the emerging feedback.

7.3 Future Work

In the following, we illustrate a research agenda covering questions which emerge
from our work and applications of our results which were out of the scope of this

165



Chapter 7 Conclusions and Future Work

dissertation. We start by summarizing open issues in continuous user involve-
ment which might influence the practical adoption of our approach. Then we
describe how our results can support software engineers’ decision making by ex-
ternalizing the user community’s preferences. Finally, we illustrate applications
of user experience in other domains.

7.3.1 Open Issues in Continuous User Involvement

Continuous user involvement is still in an early stage [217]. As a consequence,
there are several open questions and issues which future research should tackle.
We summarize two major issues we have found during the empirical evaluation
of our approach and suggest directions for appropriate solutions.

7.3.1.1 Privacy

Portneuf monitors users’ interactions with an application and builds user pro-
files from the observed events. In typical scenarios with end users the included
information is sent over the internet to the development team. Once such infor-
mation leaves the end users’ site, privacy is a major issue. The monitored data
might leak sensitive information such as passwords, social security numbers, file
names, or the content of files. In order to protect users’ privacy during continu-
ous user involvement, future research should develop mechanisms to anonymize
the monitored data without loosing information necessary to provide recommen-
dations.

For instance, error reproduction research has shown that it is often possible
to replicate a specific application execution even when any user input is altered
[58, 67]. The proposed mechanisms rely on the fact that it is sufficient to select
fake user input which triggers the same execution path as the real user input.
For instance, an conditional statement providing for youth protection might
check if the user’s age is above 21. In this case, any value greater than or equal
21 will trigger the execution of a specific branch. As a consequence, there is
no need to reveal the real age of the user. Altering the entered information to
the corresponding branch condition, still triggers the same application execution
behavior, but it protects the user’s privacy.

Future work should investigate how such mechanisms influence the informa-
tion quality in the more general case of user feedback. A specific question of
interest is, which influence anonymization has on the recommendation quality
and duplicate rate.

7.3.1.2 Motivation and Incentives

In particular the recommendation of feature requests depends on available user
preferences, in the form of social feedback. During our evaluation we found

166



7.3 Future Work

that under-contribution is a real issue due to the ramp-up problem [163] of
collaborative filtering. The underlying issue is that users do not directly benefit
from assigning votes or ratings to existing feedback. As this also takes time, users
need to be motivated to contribute. Future research therefore should explore,
which incentives can be offered to provoke more contributions.

Beenen et al. [22] have shown that social psychology predicts which incentives
need to be given to motivate users to contribute to online communities. A dif-
ferent promising direction is gamification, the “use of game design elements in
non-game contexts” [79]. Research in other areas has shown that gamification
can motivate users and even influence their behavior. For instance, Singer and
Schneider [264] successfully encouraged developers to frequently commit their
working copies. Centola [59] illustrated how social reinforcement can spread
specific behavior in a social network. In fact, we already included two gamifica-
tion elements in the framework implementation we used during our evaluation: a
leaderboard where the community could find the most influential users, and tags
(or “badges”) assigned by developers to particularly helpful feedback or feedback
which made it on the development backlog. However, further research needs to
be done to understand and optimize the occurrent effects.

But apart from the quantity of user feedback, users’ motivation also deter-
mines its quality. Zimmermann et al. [298] propose Cuezilla, an issue tracker
add-on which should help reporters to submit bug reports with a higher quality.
The authors included several incentives for reporters, including a quality meter
indicating the current quality of the report and tips why specific entities are
important to include. Future research should transfer the existing results to
general user feedback and evaluate the emerging effects.

7.3.2 Social Software Engineering Decisions

We argue that Portneuf is inherently a decision support system, as it ex-
ternalizes otherwise hidden information about the user community which might
influence decisions in a software project. Engineering software in a social way in-
cludes considering users as first order citizens during decision making [182]. We
describe three cases of how software engineering decisions can be supported by
informing developers and managers of users’ preferences and suggest directions
for corresponding future work.

7.3.2.1 User Satisfaction Dashboards and Metrics

For the purpose of this dissertation, we focused our work on the feasibility and
conceptual design of user feedback recommendations. Specifically, we did not
work on one important aspect of the user involvement workflow: the connec-
tion of user feedback with the conventional development infrastructure. To be
of more practical relevance to developers, the gathered collective user feedback

167



Chapter 7 Conclusions and Future Work

New system!

da
ily

 fe
ed

ba
ck
!

time!

Mature system!

da
ily

 fe
ed

ba
ck
!

time!

all feedback!
social feedback!

“Bug-free” release!

da
ily

 fe
ed

ba
ck
!

time!

“Buggy” release!
da

ily
 fe

ed
ba

ck
!

time!

all feedback!
social feedback!

all feedback!
social feedback!

all feedback!
social feedback!

Figure 7.1: Possible feedback signatures for different system states.

and its characteristics need to be visualized in specialized dashboards [182]. De-
velopers need to be able to assess emerging trends at a glance, to generate tables
and figures for work planning meetings and reporting, and to link gathered feed-
back with other tools, such as issue trackers or CRM applications. Consequently,
future research should explore developers’ requirements on user feedback dash-
boards and investigate information needs and visualization requirements. Ex-
isting services such as Google Analytics1 which analyze and visualize the user
community of web pages, might be a starting point for this work. Their analysis
yields statistics about the usage of a web page, grouped by characteristics of its
users. This allows developers to draw conclusions about lost opportunities and
success criteria based on when and where most users leave their web site.

1http://www.google.com/analytics/index.html

168



7.3 Future Work

In addition, future work should investigate which conclusions can be drawn
and which predictions made from the resulting trends. During our studies on
user involvement in open source communities (Section 4.4) and application dis-
tribution platforms (Section 4.5), as well as in our evaluation (Section 6.3), we
found evidence of a relation between release time and user feedback rate.

We therefore assume that the daily amount of new feedback and the corre-
sponding fraction of social feedback exhibit a characteristic signature in different
software lifecycle phases. The corresponding figures might allow for an assess-
ment of user satisfaction and software quality. Figure 7.1 illustrates four possible
signatures of user feedback. In the early stages of a new system, the total amount
of feedback will continuously increase, followed by a similar increase of the so-
cial feedback fraction. In contrast, a mature system will show a rather uniform
distribution of feedback and social feedback over time. In addition, we expect
that the quality of a new release leaves its mark on the feedback signature. As
illustrated, a bug-free release will trigger new feedback in the first couple of days
after the release, but then feedback should return to a steady state. The corre-
sponding fraction of social feedback will probably increase in a similar way but
with a short delay. In contrast, if a release is rather buggy, we expect a steeper
increase of feedback and a smaller fraction of social feedback.

We argue that Portneuf provides a starting point towards a set of measures
which can support product and release managers’ decision making. However,
further research needs to be done to develop reliable and precise metrics from
these measures, supposedly by collecting and studying real-world data in a hy-
pothesis driven way.

7.3.2.2 User Preference Conflicts

In software engineering, requirements verbalize decision alternatives regarding
functionality and quality of the developed software [99]. Requirements for larger
systems are typically negotiated by stakeholders with possibly contradicting
preferences or even limited system and application domain knowledge. Not
least due to these socio-technical issues, researchers consider requirements nego-
tiation as one of the most critical and inefficient activities in software engineering
projects [232]. Especially in projects where a large number of stakeholders is
involved, conflicting preferences are frequent [99, 217]. To make matters worse,
research has shown that stakeholders’ preferences do not remain stable over time
[98].

Users are particularly important stakeholders in software projects. In fact,
the main goal of user involvement is to improve the usefulness of a system by
understanding the needs and expectations of its users. But as we have found
during our studies (cf. Section 3.3), also user preferences are often contradictory.
Portneuf supports the continuous involvement of a large number of users
by consolidating user feedback and facilitating the assessment of its impact.

169



Chapter 7 Conclusions and Future Work

However, future research needs to investigate how to identify and possibly resolve
contradictions in the resulting collective user feedback.

The possibility to quantify social feedback could be a starting point for this
work. Votings and ratings are by definition quantifiable, while comments might
need a quantifiable extension which determines the comment type or included
sentiment. For instance, Schneider et al. [260] present ConTexter, a framework
which facilitates gathering feedback in context with mobile devices. When pro-
viding feedback with ConTexter, reporters also need to select a category, either
compliment, neutral, or complaint. With quantifiable social feedback, different
preferences can be identified and measured by cluster analysis.

Once conflicting user preferences can be detected, the question remains how
to resolve the conflicts. To set a starting point for future research, we investi-
gated the effects of applying group recommendation techniques [147, 148, 193]
to requirements negotiation in an empirical study [99]. Our results show that
group recommendations and the visibility of preferences to other stakeholders
have an impact on the perceived usability and quality of the provided decision
support. Moreover, our results indicate that the majority rule, which takes de-
cisions according to the majority of stakeholders’ votes, is a simple but effective
heuristic in requirements negotiation – a finding which is confirmed by related
work [133].

7.3.2.3 Social Configuration Management

Software systems need to evolve over time to remain usable and relevant to their
users [113, 171]. Recent software development processes embrace this change.
Configuration management [142] is concerned with managing and controlling
change during software evolution [49]. To enable developers to deal with change,
it introduces a formal process to capture, analyze, and work on change requests,
formal reports created by users or developers and denote the request to mod-
ify a work product [49]. In particular, configuration management needs to deal
with different, possibly coexisting, versions of a specific software. While some
versions (called variants) are intended to coexist, others do for instance due to
users’ unwillingness or inability to update to newer baselines. Especially mo-
bile devices’ capabilities seemingly “deteriorate” quickly. New operating system
versions often do not run on older devices, so that a software version relying
on new API calls cannot be installed by users of these devices. In practice this
leads to a mixed user audience owning different devices and, as a consequence,
more and more different running software versions. A recent study [77] drasti-
cally demonstrates the whole extent of this issue. The author investigated the
history of operating system updates on Android phones and revealed that 7 of
18 devices never ran a current version, while 12 only ran a current version for
up to a couple of weeks.

170



7.3 Future Work

Portneuf connects different users who have similar user experiences and by
that means forms user communities. The framework’s lowest layer consists of
monitoring facilities, which collect events about the application and its context.
Whenever a user wants to provide feedback, recommendations for existing feed-
back are calculated based on a comparison of this monitored usage data. The
application version is part of the information collected by Portneuf and also
gets reported to the development team. However, at this point ends Portneuf’s
support for managing software configuration.

We claim that an integration of configuration management knowledge and
user involvement during software evolution is worth further investigation in both
theoretical (e.g. integration of meta-models) and practical (e.g. improvement of
configuration management tools) aspects. We see three possible extensions to
the current state of the framework which should be investigated by future work.

Integration of User Feedback As our interviews with software professionals
(cf. Chapter 3) show, developers need longitudinal tracking facilities for user
feedback. User feedback should be seen as an important development artifact,
which is often the source of design rationale, and needs to be visualized and
traceable throughout the whole software lifecycle. Issue trackers which provide
facilities to track problems, in particular error reports, already include fields
to capture the version for which a report applies. In contrast, we argue that
user feedback should be regarded as long-term artifacts which span multiple
software versions, more similar to user requirements specifications. Future work
should therefore investigate more thoroughly, which requirements developers
have regarding the integration of user feedback into existing processes, tools,
and specifications, and how configuration management can be supported.

Cross-Version User Feedback Recommendation Future studies should ana-
lyze the impact of comparing user experience from different versions of the same
software. While Portneuf does not limit its recommendations to users of the
same version, the impact of this approach is unknown. Further, configuration
management knowledge bases could be used (a) to inform users about changes
in other versions which may correspond to their feedback and (b) to inform de-
velopers about possibly re-occurring problems, similar to re-opening a ticket in
an issue tracker.

Social Beta Current software projects typically follow one of three release
management approaches. First and most commonly, new versions are defined
based on release plans, which identify enhancements and improvements that will
be included. Before a major release, developers typically create pre-release ver-
sions, which might also be distributed to dedicated users, so called beta-testers.
Their feedback helps to perfect the upcoming release, but does not change the

171



Chapter 7 Conclusions and Future Work

!"#$%&'(')*#+,--)./#0"#+)&'12#0%/1#341(%#5"#6%%781&9#!)22%&:)*#

:;%#

<"#=">"># <"#=">"=?#
<"#=">"@#!"#$%&##'()*+%

<"#="=">#

(,--)./%7#
8A#B@C#

.%-)./%7#
8A#DEC#

.%-)./%7#
8A#=FC#

+)&'12#8%/1#
.%2%1(%#

*)/#%*),G4#
(,--)./#

!"#$%&##'()*+%

;%.G%#

;%.G%#

Figure 7.2: Sample social beta release tree.

release plan. Second, software product lines [233] are special software variants,
which are created by configuring reusable software assets. To this end, software
product lines engineering identifies commonalities and variabilities of a product
within a specific application domain and captures them in product family spec-
ifications. Creating a new product line then involves systematically deriving a
new configuration from the product family and combining the existing assets
accordingly. The two main advantages of this approach are low product devel-
opment costs and the possibility to serve multiple target groups. Third, in the
perpetual beta paradigm [215] a product is incrementally improved and enhanced
while already being rolled out. What was sarcastically called bananaware be-
fore the days of Web 2.0, has now become a mainstream approach to software
development – especially for web applications.

We argue that these three approaches might be combined beneficially to a
“social beta” approach when collective user feedback is available. In the social
beta approach, clusters of user feedback determine small incremental improve-
ments and enhancements. As shown in Figure 7.2, beta versions incorporating
the corresponding changes might be released simultaneously, similar to small
temporary product lines. Based on the impact of the test results, which again
take the form of user feedback, the different branches can then be merged before
the next major release.

In contrast to Ali et al. [7], who proposed social software product lines based
on user-guided adaptation, we suggest to utilize multiple parallel beta versions
to evaluate the impact of small improvements and enhancements. In particular
in large software projects, there might be conflicting preferences regarding the
system’s functionality among all stakeholders [99, 217]. Moreover, research has

172



7.3 Future Work

shown that stakeholders’ preferences do not remain stable [98]. The social beta
approach allows developers to try different possibly contradictory preferences in
parallel, to collect measures about the impact of each, and to decide for and
release the most impactful package.

Consequently, future research should evaluate the social beta approach in
real software projects. Specifically, we see three categories of research questions
which are relevant in this context. First, in which situations is it reasonable to
involve users in a social beta fashion? Second, which are the project management
and infrastructure requirements to realize such an approach? Third, does the
social beta approach add value from the software developers’ and managers’
point of view?

7.3.3 User Experience Applications

User experience is inherently a conceptualization of information about the in-
terplay between users and applications in a specific context over a particular
time period. While we have shown how to harness user experience as enabler for
continuous user involvement in software engineering activities, this application
is no end in itself. We summarize three additional applications of user experi-
ence in other domains, highlighting relevant research problems and suggesting
directions for appropriate solutions.

7.3.3.1 Question and Answer Sites

On question and answer sites such as StackOverflow2, developers can ask ques-
tions on almost any technical area, and typically receive answers within few
minutes [189]. But StackOverflow has already left behind the state of being
a simple forum, evolving into a community based encyclopedia of development
knowledge: Research has shown that considerable parts (up to 87%) of public
APIs are documented by the crowd [226, 227]. However, “it is difficult to an-
swer, when one does not understand the question”3 . Accordingly, it depends on
the question if and how quickly developers find answers when searching Q&A
sites. While it might be straightforward to look up answers for a specific ex-
ception, things get more complicated when verbalizing more complex user and
application behavior. For instance, Chilana et al. [66] propose a new approach
to help, which lets users choose a user interface element that they believe is
relevant to their problem. Likewise, we think that in particular question and
answer sites made for users, such as SuperUser4 or DrupalAnswers5 can benefit

2http://stackoverflow.com
3Quotation from ambassador Sarek in “Star Trek IV”.
4http://superuser.com/
5http://drupal.stackexchange.com/

173



Chapter 7 Conclusions and Future Work

from a more efficient search mechanism and eventually from being embedded
into applications.

We envision that questions are enriched by characteristic user experience snap-
shots, what provides two benefits. First, other users can look up relevant answers
to problems they currently experience rather than searching for them. To this
end, their user experience snapshot needs to be sent to the Q&A site. Then, the
Portneuf recommender subsystem can select a list of relevant questions and
answers. As a result, users might find answers without the need to formulate
a question. Moreover, the recommended answers might be presented as con-
textual help, so that users do not even need to leave the running application.
Second, moderators with experience in specific subjects can be directly pointed
to open questions in their area of expertise. To this end, future research needs
to explore ways to symbolize user experience, so that moderators might register
for questions which include specific events.

7.3.3.2 Instrumented Spaces and Embedded Systems

Instrumented spaces and environments are an infrastructure for ubiquitous com-
puting [95]. Typical instrumented spaces are equipped with sensors and actu-
ators, which allow for monitoring and acting on otherwise uninvolved physical
systems. Application scenarios include specialized environments for people who
need constant assistance such as elders [16, 280] and environments whose goal
is to reduce wasting of energy [129]. The building sector has a particularly high
potential to address climate change. For instance, more than 65% of all electric-
ity produced in the U.S. is used for commercial and residential buildings [175].
Instrumented spaces such as intelligent workplaces [128, 270] aim at improving
the energy footprint of commercial buildings. To this end, research explores the
effects of automating building fixtures and utilizing intelligent control strategies
such as occupancy sensing and daylight harvesting on overall energy consump-
tion. Mobile and ubiquitous systems facilitate the complementary involvement
of users by according them personal control over utility fixtures, which is im-
portant for their acceptance of intelligent workplaces and provides for sustained
energy efficiency [231].

For instance, intelligent systems might suggest a user to adjust her computer’s
power settings after observing a particularly long idle period. Thus, the limits of
individual control in intelligent workplaces are determined in particular by com-
mon energy saving rules or constraints. In other words, intelligent workplaces
are complex ecosystems characterized by an interplay of hardware, software, and
groups of human users with individual needs and common constraints. In order
to fine-tune common constraints or at least inform their administrators, users
are encouraged to provide feedback on the suggestions given by the intelligent
workplace. The result of these interactions is a large amount of feedback on
suggestions which were given to specific users in a particular context. But to

174



7.3 Future Work

react on this feedback, administrators of the intelligent workplace or developers
of underlying software need to understand the conditions under which feedback
was given, and have to be able to assess how many users are affected by specific
change requests.

Portneuf utilizes monitoring data about the use of software in a specific
context to consolidate user feedback and allow developers to assess its impor-
tance in the user community. For the purpose of this dissertation, we focused on
typical interactive software and deliberately excluded hardware sensors to reduce
complexity. However, our definition of context as well as its conceptual represen-
tation in the Portneuf model, explicitly includes the notion of environment.
Moreover, while we concentrated on users in the form of actual persons, concep-
tually also embedded systems might become users of an application. We claim
that future research on instrumented spaces should apply Portneuf to gather
contextual information about the environment as part of user experience when
collecting feedback on intelligent suggestions and actuators. We believe that
context-sensitive user experience is helpful information for administrators and
developers of intelligent workplaces and might serve as decision support when
adjusting or learning more individual energy saving rules. Moreover, future work
should investigate if and how embedded systems can take the role of users in
the described ecosystems, and in which way their feedback can influence how
participating components are controlled.

7.3.3.3 Corrective Maintenance and User Comprehension

Error reports typically lack context information which allows developers to un-
derstand the conditions under which a specific error happened [298]. Especially
the necessary steps to reproduce a reported error are often missing, incomplete,
or ambiguous. To this end, software maintenance research investigates methods
to automatically collect the relevant information. Existing approaches range
from the automatic collection of stack traces to issue trackers guiding reporters
while submitting errors [298].

However, stack traces alone do not really allow developers to understand what
a specific user did and in which particular context, as they represent only a single
snapshot of the application’s reaction. Therefore, research aims at automatizing
the reproduction of more complex and dynamic user behavior. For instance,
we developed an error replayer which accompanies a video-like representation
of users’ interactions with relevant contextual information [219]. The system,
which is part of the FastFix research project6, allows for lightweight, determinis-
tic fault replication of concurrent programs by using cooperative recording and
partial log combination [185].

6http://www.fastfixproject.eu

175



Chapter 7 Conclusions and Future Work

To further improve user comprehension, we propose to visualize the user expe-
rience collected by Portneuf to support developers while reproducing errors.
User experience snapshots contain context-sensitive information about user, ap-
plication, and environment, which might be helpful to understand what users
did to obtain a specific error, and why. The FastFix project mentioned above
as well as tools like TimeLine [122], which aim at visualizing steps to repro-
duce might be a starting point for future research. In addition, we suggest to
distinguish between short-term and long-term user experience. Similar to short-
term and long-term interests [27], we claim that user experience will have peaks
and trends. Peaks (short-term) might determine a specific scenario and help
to understand a particular situation, while trends (long-term) give evidence on
clusters of users or typical feature sets.

A particular challenge lies in feedback on mobile user experience: Given the
small screen estate of mobile devices, feedback on the usability of a mobile ap-
plication is different from classical desktop applications [140]. While the latter
might be concerned with the arrangement of the user interface, mobile applica-
tions typically present only few user interface items but on multiple screens. As
a consequence, feedback on the usability of mobile applications will rather con-
cern navigational paths than single user interface elements. We think that future
research needs to explore, as first step, how users can be supported when pro-
viding feedback on mobile applications. Which methods do they need to explain
their pains, which techniques to record and present shortcomings in navigation
paths?

Finally, future work should investigate methods how to detect usability issues
in mobile applications by analyzing large amounts of user experience data. To
provide a starting point for this work, we developed a heuristic method which
detects so-called low discoverability usability errors in mobile applications [14].
To this end, we analyze monitored sequences of users’ transitions between the
views of a specific mobile application using sequential pattern mining. We found
a specific navigational pattern, characterized by low retention and navigational
loops, that is an indicator for low discoverability errors. We performed a pre-
liminary evaluation study which shows that our method has the potential to be
applied to mobile applications in general.

176



Appendix A

Interview Questions

The following sections include our interview questions for analyzing user in-
volvement in software evolution practice (cf. Chapter 3). We conducted semi-
structured, open-ended interviews, which allow for improvisation and thus facil-
itate an exploration of the studied cases. To this end, we provided each subject
with the question catalogue one week before the interview. We explicitly called
their attention to the semi-structured nature of the interview, and underlined
that the questions should be regarded as support. If a subject was working in
multiple projects, we asked her to select one project which was developed for a
large number of end users.

A.1 Project Information

1. Of which type is the project?

• ( ) closed source,
• ( ) open source,
• ( ) other:

2. Which kind of software is the project? For instance,

• [ ] mobile application,
• [ ] desktop application,
• [ ] off the shelf-component,
• [ ] customized software,
• [ ] other:

3. Which user audience do you target?

• ( ) any user,
• ( ) special group of users:
• ( ) other:

177



Appendix A Interview Questions

4. How many active users does your software have?

• ( ) less than 100: ___
• ( ) between 100 and 500
• ( ) between 500 and 1.000
• ( ) between 1.000 and 5.000
• ( ) between 5.000 and 10.000
• ( ) more than 10.000: ____
• ( ) no answer

5. How frequently do you release a new external version?

• ( ) more often than every 2 weeks,
• ( ) every 2 to 4 weeks,
• ( ) every 4 to 8 weeks,
• ( ) every 2 to 6 months,
• ( ) less often than every 6 months

A.2 User Feedback - Current Landscape

1. How can your users contribute to improve your software?

• [ ] by reporting errors
• [ ] by requesting new features
• [ ] by providing feedback on existing features
• [ ] by requesting improvements or enhancements
• [ ] by rating the product
• [ ] other:

2. How often can your users contribute to improve your software?

• [ ] at the beginning of a project (e.g. by focus groups)
• [ ] regularly (e.g. before you plan a new major release)
• [ ] continuously (i.e. at any time during the software lifecycle)
• [ ] other:

3. How do your users report errors? (often, sometimes, rarely, never)

• [ ] by using a public issue tracker,

178



A.2 User Feedback - Current Landscape

• [ ] by sending email,
• [ ] by calling on the phone,
• [ ] by writing blog posts,
• [ ] by writing to mailing-lists,
• [ ] by publishing their opinion on other publicly available media,
• [ ] by using a reporting mechanism which is integrated in the software,
• [ ] by using a specialized service (e.g. user-voice, get-satisfaction),
• [ ] other:

4. How do your users request new features? (often, sometimes, rarely,
never)

• [ ] we actively carry out studies with a representative group,
• [ ] by using a public issue tracker,
• [ ] by sending email,
• [ ] by calling on the phone,
• [ ] by writing blog posts,
• [ ] by writing to mailing-lists,
• [ ] by publishing their opinion on other publicly available media,
• [ ] by using a feedback mechanism which is integrated in the software,
• [ ] by using a specialized service (e.g. user-voice, get-satisfaction),
• [ ] other:

5. How do your users provide feedback on existing features? (often,
sometimes, rarely, never)

• [ ] we actively carry out studies with a representative group,
• [ ] by using a public issue tracker,
• [ ] by sending email,
• [ ] by calling on the phone,
• [ ] by writing blog posts,
• [ ] by writing to mailing-lists,
• [ ] by publishing their opinion on other publicly available media,
• [ ] by using a feedback mechanism which is integrated in the software,
• [ ] by using a specialized service (e.g. user-voice, get-satisfaction),
• [ ] other:

179



Appendix A Interview Questions

6. How do your users request enhancements and improvements to your
software? (often, sometimes, rarely, never)

• [ ] we actively carry out studies with a representative group,
• [ ] by using a public issue tracker,
• [ ] by sending email,
• [ ] by calling on the phone,
• [ ] by writing blog posts,
• [ ] by writing to mailing-lists,
• [ ] by publishing their opinion on other publicly available media,
• [ ] by using a feedback mechanism which is integrated in the software,
• [ ] by using a specialized service (e.g. user-voice, get-satisfaction),
• [ ] other:

A.3 User Feedback - Current Workflow and
Problems

1. Why is user feedback interesting for you?

• [ ] it helps to improve the software quality (e.g. to fix bugs, to improve
features)

• [ ] it helps to find missing features
• [ ] it helps to understand what users want and need
• [ ] it helps to advertise and market the application
• [ ] it helps to understand, if and how the product is accepted (e.g. by

ratings)
• [ ] other:

2. How do you process user feedback, why, and which problems do you
encounter?

3. Which activities take most time while processing user feedback?

4. Which activities are the most difficult while processing user feedback?

5. Do you relate single reports to each other (e.g. to identify duplicates or
antipodes)?

• ( ) yes, these get mapped automatically by a tool

180



A.4 User Feedback - Potentials and Challenges

• ( ) yes, our users correlate their feedback themselves
• ( ) yes, we do this manually before starting the analysis
• ( ) yes, we do this successively while analyzing the single reports
• ( ) no, we don’t. Reason:

6. How easy or intuitive is it for you to relate different feedback to each
other?

• ( ) very easy
• ( ) somewhat easy
• ( ) undecided
• ( ) somewhat difficult
• ( ) very difficult

7. According to what do you relate single reports?

• [ ] if both users had the same experience with the software
• [ ] if the reports are duplicates
• [ ] if the reports are antipodes
• [ ] if one feedback details another
• [ ] if the reports concern the same feature
• [ ] if the type of the reports is the same (e.g. both are feature requests)
• [ ] other:

8. Overall, how satisfied are you with your current practice of processing
user feedback?

• ( ) very satisfied
• ( ) somewhat satisfied
• ( ) undecided
• ( ) somewhat unsatisfied
• ( ) very unsatisfied

A.4 User Feedback - Potentials and Challenges

1. Would you embrace tool support to relate user feedback to each other
and why?

2. When should user feedback be related by a tool

181



Appendix A Interview Questions

• [ ] the tool should show the user relevant existing feedbacks to allow
her to comment on, rate, or vote for them (proactive)

• [ ] the tool should simply collect user feedback. The gathered reports
should be analyzed and related later (reactive)

• [ ] other:

3. According to what should user feedback be related by a tool? (open
question)

• [ ] if the users had the same experience with the software

• [ ] if the reports are duplicates

• [ ] if the reports are antipodes

• [ ] if one feedback details another

• [ ] if the reports concern the same feature

• [ ] if the type of the reports is the same (e.g. both are feature requests)

• [ ] other:

4. Is it important for you to assess the potential of a specific user feedback
to improve your software and why?

a) How would you assess the importance of a specific user feedback
for your project?

i. [ ] by the quantity of its occurrence,

ii. [ ] by assessing the individual user who contributed,

iii. [ ] only after working on it (retrospective),

iv. [ ] not at all. Reason:

v. [ ] other:

b) Would you embrace tool support for this assessment and why?

5. Is it important for you to assess the importance of a specific user feedback
to the user community and why?

a) How would you assess the importance of a specific user feedback
to the user community? (multiple answers allowed)

i. [ ] by the quantity of its occurrence,

ii. [ ] by assessing the individual user who contributed,

iii. [ ] only after working on it (retrospective),

iv. [ ] not at all. Reason:

182



A.5 Personal Information

v. [ ] other:

b) Would you embrace tool support for this assessment and why?

6. Can you tell if there are specific individual users that provide particu-
larly important or frequent information, and how?

a) Do you or would you treat their feedback differently

i. [ ] yes, we read it first
ii. [ ] yes, if we have a lot of similar feedback, we only / first read

the feedback of this user
iii. [ ] no, we don’t. Reason:
iv. [ ] other:

b) Do you or would you let the users or the community know that
they are important and how?

i. [ ] yes, we let important users know that their feedback is impor-
tant to us

ii. [ ] yes, we let a specific user know if a specific feedback was
important to us

iii. [ ] yes, we let the community know which users are important to
us

iv. [ ] yes, we let the community know which feedback is important
to us

v. [ ] no, we don’t. Reason:

A.5 Personal Information

1. How would you describe your role in the project?

• [ ] requirements engineer
• [ ] developer
• [ ] tester
• [ ] architect
• [ ] project manager
• [ ] other:

2. How many years of experience do you have in your main role?

• ( ) less than 1 year,

183



Appendix A Interview Questions

• ( ) between 1 and 2 years,
• ( ) between 3 and 5 years,
• ( ) between 6 and 10 years,
• ( ) more than 10 years

184



Appendix B

List of Portneuf Sensors

Table B.1 lists the sensors we implemented for our summative evaluation with
BetterTouchTool. Sensors 1 through 8 are generic, application independent
sensors for Mac OS X and iOS, while sensors 9 and 10 are application-specific.

Table B.1: Generic and application-specific Portneuf sensors.

# monitored event type sensor type added in version

1 exceptions generic 0.799

2 signals generic 0.799

3 console logs generic 0.799

4 user interactions generic 0.799

5 action messages generic 0.799

6 application switches generic 0.799

7 wake, sleep, and quit events generic 0.91

8 high memory usage generic 0.91

9 gestures and shortcuts application-specific 0.799

10 window snapping actions application-specific 0.799

185



Appendix B List of Portneuf Sensors

186



List of Figures

2.1 User involvement and user involvement methods. . . . . . . . . 10
2.2 User roles and their corresponding influence (adopted from [74]). 11
2.3 Descriptive user involvement model according to Ives and Olson

(adopted from [146]). . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Different user representations. The representativeness of a user

subset might be unknown. . . . . . . . . . . . . . . . . . . . . . 15
2.5 Taxonomy of user information types. . . . . . . . . . . . . . . . 24

3.1 User involvement in software evolution – case study methodology. 38
3.2 User feedback analysis process. . . . . . . . . . . . . . . . . . . 45

4.1 Benchmark for software socialness (following [173]). . . . . . . . 58
4.2 Research method. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Distribution of reviews per user. . . . . . . . . . . . . . . . . . . 70
4.4 Daily feedback per app price. . . . . . . . . . . . . . . . . . . . 71
4.5 Daily feedback per app category. . . . . . . . . . . . . . . . . . 71
4.6 Relative distributions of feedback over time. . . . . . . . . . . . 72
4.7 Feedback length by application price. . . . . . . . . . . . . . . . 73
4.8 Feedback length and ratings. . . . . . . . . . . . . . . . . . . . . 73
4.9 Frequency of different ratings. . . . . . . . . . . . . . . . . . . . 74
4.10 Density plot of feedback helpfulness as rated by other users. . . 75
4.11 Helpfulness and feedback length. N = 67143. . . . . . . . . . . . 82
4.12 Feedback helpfulness and rating. N = 67139. . . . . . . . . . . . 84

5.1 Overview of the Portneuf user involvement model. . . . . . . 92
5.2 Main abstractions of user experience. . . . . . . . . . . . . . . . 93
5.3 Model of application use. . . . . . . . . . . . . . . . . . . . . . 94
5.4 Context-aware model of application use. . . . . . . . . . . . . . 95
5.5 Model of expected and observed application behavior. . . . . . 97
5.6 Context-sensitive model of user experience. . . . . . . . . . . . 98
5.7 Model of user feedback and user experience. . . . . . . . . . . . 99
5.8 Model of collective user feedback. . . . . . . . . . . . . . . . . . 100
5.9 Example of collective user feedback. . . . . . . . . . . . . . . . . 101
5.10 Collective user feedback and user experience. . . . . . . . . . . . 102
5.11 Context-aware model of user feedback recommendation based on

user experience. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

187



List of Figures

5.12 Context-aware model of feedback recommendation relevance. . . 104
5.13 Model of user reputation score. . . . . . . . . . . . . . . . . . . 104
5.14 Model of user reputation score. . . . . . . . . . . . . . . . . . . 105
5.15 Portneuf applications. . . . . . . . . . . . . . . . . . . . . . . 106
5.16 Using Portneuf during early design. . . . . . . . . . . . . . . 108
5.17 Example of how Portneuf recommends to argument for a usability

test alternative during early design. . . . . . . . . . . . . . . 109
5.18 Using Portneuf during system testing. . . . . . . . . . . . . . 111
5.19 Example of how Portneuf recommends to comment a test incident

report during system testing. . . . . . . . . . . . . . . . . . . . 112
5.20 Using Portneuf during software evolution. . . . . . . . . . . . 114
5.21 Example of how Portneuf recommends to vote for an error

report during software evolution. . . . . . . . . . . . . . . . . . 115
5.22 Portneuf framework architecture. . . . . . . . . . . . . . . . . 116
5.23 Portneuf monitoring subsystem. . . . . . . . . . . . . . . . . 117
5.24 Portneuf sensor lifecycle. . . . . . . . . . . . . . . . . . . . . 118
5.25 Portneuf user experience profiling subsystem. . . . . . . . . . 119
5.26 Comparing different user experience aspects using cosine similarity.121
5.27 Portneuf user feedback subsystem. . . . . . . . . . . . . . . . 122
5.28 Portneuf recommendation subsystem. . . . . . . . . . . . . . 123
5.29 Portneuf analytics subsystem. . . . . . . . . . . . . . . . . . . 125
5.30 Simplified example of CollectiveReputationScore. . . . . 127

6.1 MOSKitt UML modeling tool. . . . . . . . . . . . . . . . . . . . 134
6.2 Deployment of the Portneuf framework for MOSKitt. Port-

neuf components are shown in gray. . . . . . . . . . . . . . . . 135
6.3 Integration of Portneuf in MOSKitt. . . . . . . . . . . . . . . 136
6.4 Portneuf for MOSKitt: Example of a user feedback recommen-

dation and collective user feedback. . . . . . . . . . . . . . . . . 137
6.5 Integration of Portneuf in BetterTouchTool. . . . . . . . . . . 138
6.6 Portneuf for BetterTouchTool: Example of a user feedback rec-

ommendation and collective user feedback. . . . . . . . . . . . . 139
6.7 Portneuf developer tag in BetterTouchTool end user feedback. 140
6.8 Evaluation method. . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.9 End user feedback characteristics without and with Portneuf.

The black curve depicts the cumulative amount of feedback over
time, i.e. feedback(t). The red curve shows the cumulative number
of duplicates over time, i.e. duplicates(t). Dots illustrate releases
of BetterTouchTool. . . . . . . . . . . . . . . . . . . . . . . . . 146

6.10 Effects of user feedback recommendations in Portneuf. . . . 148
6.11 Recommendation ranks in Portneuf. . . . . . . . . . . . . . . 149
6.12 Analysis of ineffective Portneuf recommendations. . . . . . . 150
6.13 Reasons for duplicates in Portneuf. . . . . . . . . . . . . . . 151

188



List of Figures

7.1 Possible feedback signatures for different system states. . . . . . 168
7.2 Sample social beta release tree. . . . . . . . . . . . . . . . . . . 172

189



List of Figures

190



List of Tables

2.1 Comparison between different user roles. . . . . . . . . . . . . . 12
2.2 Types of user information discovered by Heiskari and Lehtola

(adopted from [136]). . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Different types of user information. . . . . . . . . . . . . . . . . 24
2.4 User involvement methods organized by time and place (adopted

from [198]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 User involvement methods spanning multiple lifecycle phases (ac-

cording to [198]). . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Overview of interview partners and studied projects. . . . . . . 39
3.2 User involvement infrastructure: user feedback channels and fre-

quency of utilization –

E
R
_I
n

E
R
_A
p

E
R
_B
l

F
R
_A
p

F
R
_F
o

F
R
_B
l

F
R
_F
a

E
X
_A
p

E
X
_P
h

E
X
_B
l

R
A
_E
x

0 1 2 3 4 5

most

often

sometimes

rarely

most
often
sometimes
rarely

most often,

E
R
_I
n

E
R
_A
p

E
R
_B
l

F
R
_A
p

F
R
_F
o

F
R
_B
l

F
R
_F
a

E
X
_A
p

E
X
_P
h

E
X
_B
l

R
A
_E
x

0 1 2 3 4 5

most

often

sometimes

rarely

most
often
sometimes
rarely

often,

E
R
_I
n

E
R
_A
p

E
R
_B
l

F
R
_A
p

F
R
_F
o

F
R
_B
l

F
R
_F
a

E
X
_A
p

E
X
_P
h

E
X
_B
l

R
A
_E
x

0 1 2 3 4 5

most

often

sometimes

rarely

most
often
sometimes
rarely
sometimes,

E
R
_I
n

E
R
_A
p

E
R
_B
l

F
R
_A
p

F
R
_F
o

F
R
_B
l

F
R
_F
a

E
X
_A
p

E
X
_P
h

E
X
_B
l

R
A
_E
x

0 1 2 3 4 5

most

often

sometimes

rarely

most
often
sometimes
rarelyrarely 40

3.3 User-developer communication modes across studied companies. 42
3.4 Perceived complexity of and satisfaction with current user feed-

back analysis practice. . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Overview of research data . . . . . . . . . . . . . . . . . . . . . 62
4.2 Overview of user feedback data set by categories. N = 1126453. 68
4.3 Topics in user feedback. N = 1, 100. . . . . . . . . . . . . . . . . 76
4.4 User feedback topic categories. N = 1100. . . . . . . . . . . . . 77
4.5 Frequent topic patterns in user feedback. N = 1100. . . . . . . . 78
4.6 Distribution of ratings across topics in user feedback. N = 1100

–

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable1 star,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable
2 stars,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable

3 stars,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable

4 stars,

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

corrective
forward
management
re-engineering
not classifiable

5 stars. . . . . . . . . 80
4.7 Top five topics per rating. . . . . . . . . . . . . . . . . . . . . . 81
4.8 Helpfulness of topics in user feedback. N = 74. . . . . . . . . . . 83

6.1 Developer feedback tags in Portneuf. . . . . . . . . . . . . . . 140
6.2 Evaluation data sets. . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3 Evaluation of impact assessment. . . . . . . . . . . . . . . . . . 153

B.1 Generic and application-specific Portneuf sensors. . . . . . . . 185

191



List of Tables

192



Bibliography

[1] Stack Overflow. Last accessed: 01.08.2012. Available from: http://www.
stackoverflow.com.

[2] A. Abdul-Rahman and S. Hailes. Supporting Trust in Virtual Commu-
nities. In R. H. Sprague, editor, Proceedings of the 33rd Annual Hawaii
International Conference on System Sciences, pages 1–9, Hawaii, HI, USA,
2000. Published by the IEEE Computer Society, IEEE.

[3] ACM. ACM Digital Portal. Last accessed: 28.08.2012. Available from:
http://portal.acm.org/portal.cfm.

[4] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules be-
tween Sets of Items in Large Databases. In SIGMOD Conference on Man-
agement of Data, pages 207–216, Washington, DC, USA, 1993. ACM.

[5] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of
the Eleventh International Conference on Data Engineering, pages 3–14,
Taipei, Taiwan, 1995. IEEE Comput. Soc. Press.

[6] L. Alben. Quality of Experience: Defining the Criteria for Effective Inter-
action Design. Interactions, 3(3):11–15, 1996.

[7] R. Ali, C. Solis, F. Dalpiaz, W. Maalej, P. Giorgini, and B. Nuseibeh. So-
cial Software Product Lines. In 2011 First International Workshop on Re-
quirements Engineering for Social Computing, pages 14–17, Trento, Italy,
Aug. 2011. IEEE.

[8] R. Ali, C. Solis, I. Omoronyia, M. Salehie, and B. Nuseibeh. Social Adapta-
tion - When Software Gives Users a Voice. In 7th International Evaluation
of Novel Approaches to Software Engineering (ENASE’12), pages 75–84,
Wroclaw, Poland, 2012.

[9] S. Anand and B. Mobasher. Contextual Recommendation. Discovering
and Deploying User and Content Profiles, pages 142–160, 2007.

[10] W. L. Anderson and W. T. Crocca. Engineering practice and codevelop-
ment of product prototypes. Communications of the ACM, 36(6):49–56,
June 1993.

193

http://www.stackoverflow.com
http://www.stackoverflow.com
http://portal.acm.org/portal.cfm


Bibliography

[11] S. J. Andriole. Storyboard prototyping: a new approach to user require-
ments analysis. QED Information Sciences, Inc., Wellesley, MA, USA,
Jan. 1989.

[12] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an open bug repository.
In eclipse ’05: Proceedings of the 2005 OOPSLA Workshop on Eclipse
Technology eXchange, pages 35–39, San Diego, California, USA, 2005.

[13] Apple Inc. Apple App Store. Last accessed: 29.08.2012. Available from:
http://itunes.apple.com/de/genre/ios/id36?mt=8.

[14] D. Bader and D. Pagano. Towards Automated Detection of Mobile Us-
ability Issues. In Proceedings of the First European Workshop on Mobile
Engineering, Aachen, Germany, 2013.

[15] D. Bajic and K. Lyons. Leveraging social media to gather user feedback
for software development. In Proceeding of the 2nd international workshop
on Web 2.0 for software engineering, pages 1–6, Honolulu, HI, USA, 2011.
ACM.

[16] A. Bamis, D. Lymberopoulos, T. Teixeira, and A. Savvides. Towards pre-
cision monitoring of elders for providing assistive services. In Proceedings
of the 1st ACM international conference on PErvasive Technologies Re-
lated to Assistive Environments - PETRA ’08, pages 1–8, Athens, Greece,
2008. ACM.

[17] H. Barki and J. Hartwick. Rethinking the concept of user involvement.
MIS quarterly, 13(1):53–64, 1989.

[18] H. Barki and J. Hartwick. User participation and user involvement in
information system development. In Proceedings of the Twenty-Fourth
Annual Hawaii International Conference on System Sciences, pages 487–
492, Hawaii, USA, 1991.

[19] J. J. Baroudi, M. H. Olson, and B. Ives. An Empirical Study of the Im-
pact of User Involvement on System Usage and Information Satisfaction.
Communications of the ACM, 29(3):232–238, 1986.

[20] K. Battarbee. Defining co-experience. In Proceedings of the 2003 interna-
tional conference on Designing pleasurable products and interfaces - DPPI
’03, page 109, Pittsburgh, PA, USA, 2003. ACM.

[21] K. Beck and C. Andres. Extreme Programming Explained: Embrace
Change. Addison-Wesley Reading, 2nd edition, 2005.

194

http://itunes.apple.com/de/genre/ios/id36?mt=8


Bibliography

[22] G. Beenen, K. Ling, X. Wang, K. Chang, D. Frankowski, P. Resnick, R. E.
Kraut, and A. Arbor. Using Social Psychology to Motivate Contributions
to Online Communities. In CSCW ’04: Proceedings of the 2004 ACM con-
ference on Computer supported cooperative work, pages 212–221, Chicago,
Illinois, USA, 2004. ACM.

[23] A. Begel, R. DeLine, and T. Zimmermann. Social media for software en-
gineering. In Proceedings of the FSE/SDP workshop on Future of software
engineering research, pages 33–38, Santa Fe, NM, USA, 2010. ACM.

[24] M. Bekker and J. Long. User Involvement in the Design of Human-
Computer Interactions: Some Similarities and Differences between Design
Approaches. In S. McDonald, Y. Waern, and G. Cockton, editors, People
and Computers XIV - Usability or Else!, pages 135–147. Springer, 2000.

[25] B. Bergvall-Kåreborn and A. Ståhlbröst. Participatory Design - One Step
Back or Two Steps Forward? In Proceedings of the Tenth Anniversary
Conference on Participatory Design 2008, pages 102–111, Bloomington,
IN, USA, 2008. ACM.

[26] R. G. Bias. The pluralistic usability walkthrough: coordinated empathies.
In J. Nielsen and R. L. Mack, editors, Usability inspection methods, pages
63–76. John Wiley & Sons, Inc. New York, NY, USA, June 1994.

[27] D. Billsus and M. Pazzani. User Modeling for Adaptive News Access. User
Modeling and User-Adapted Interaction, 10(2-3):147–180, 2000.

[28] W. Biscardi. FCPX: What Pros Find Missing in Final Cut
Pro X. Last accessed: 08.12.2012, 2011. Available from:
http://magazine.creativecow.net/article/final-cut-pro-x-

whats-missing-for-some-pros.

[29] Bit Stadium GmbH. HockeyApp. Last accessed: 09.11.2012, 2012. Avail-
able from: http://hockeyapp.net.

[30] G. Bjerknes and T. Bratteteig. Florence in wonderland: System develop-
ment with nurses. In G. Bjerknes, P. Ehn, and M. Kyng, editors, Com-
puters and democracy: A Scandinavian challenge, pages 279–295. Gower,
Brookfield, VT, 1987.

[31] G. Bjerknes and T. Bratteteig. User Participation and Democracy : A Dis-
cussion of Scandinavian Research on System Development. Scandinavian
Journal of Information Systems, 7(1):73–98, 1995.

[32] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. The
Journal of Machine Learning Research, 3(4-5):993–1022, May 2003.

195

http://magazine.creativecow.net/article/final-cut-pro-x-whats-missing-for-some-pros
http://magazine.creativecow.net/article/final-cut-pro-x-whats-missing-for-some-pros
http://hockeyapp.net


Bibliography

[33] J. Blomberg, J. Giacomi, A. Mosher, and P. Swenton-Wall. Ethnographic
field methods and their relation to design. In D. Schuler and A. Namioka,
editors, Participatory design: Principles and practices. Erlbaum, Hillsdale,
NJ, USA, 1993.

[34] J. Blomberg, L. Suchman, and R. Trigg. Back to work: renewing old
agendas for cooperative design. In M. Kyng and L. Mathiassen, editors,
Computers and Design in Context, chapter 10, pages 267–287. MIT Press,
Cambridge, MA, USA, Nov. 1997.

[35] S. Bloomer. Real Projects Don’t Need User Interface Designers: Overcom-
ing the Barriers to HCI in the Real World. In Proceedings of OZCHI93,
the CHISIG Annual Conference on Human-Computer Interaction, pages
94–108, Canberra, Australia, 1993. ACM.

[36] S. Bloomer, R. Croft, and L. Wright. Collaborative design workshops: a
case study. interactions, 4(1):31–39, Jan. 1997.

[37] S. Bødker, E. Christiansen, and M. Thüring. A conceptual toolbox for
designing CSCW applications. In Proceedings of the First International
Workshop on the Design of Cooperative Systems, Antibes-Juan-Les-Pins,
France, 1995. INRIA Press, Rocquencourt.

[38] S. Bødker, P. Ehn, M. Kyng, J. Kammersgård, and Y. Sundblad. A
UTOPIAN experience: On design of powerful computer-based tools for
skilled graphic workers. In G. Bjerknes, P. Ehn, and M. Kyng, editors,
Computers and democracy: A Scandinavian challenge, pages 251–278.
Gower, Brookfield, VT, USA, 1987.

[39] B. Boehm. Requirements that Handle IKIWISI, COTS, and Rapid
Change. IEEE Computer, 33(7):99–102, 2000.

[40] B. Boehm and R. Ross. Theory W Software Project Management:
Principles and Examples. IEEE Transactions on Software Engineering,
15(7):902–916, 1989.

[41] B. W. Boehm. A Spiral Model of Software Development and Enhancement.
IEEE Computer, (May):61–72, 1988.

[42] R. Bonacin and M. C. C. Baranauskas. Usability in the Organisational
Context: a Semiotic-Participatory Approach. In The 7th International
Workshop on Organisational Semiotics, Setúbal, Portugal, 2004.

[43] G. A. Boy. The group elicitation method for participatory design and
usability testing. interactions, 4(2):27–33, Mar. 1997.

196



Bibliography

[44] K. Braa. Influencing System Quality by Using Decision Diaries in Pro-
totyping Projects. In PDC ’92: Proceedings of the Participatory Design
Conference, pages 163–170, Cambridge, MA, USA, 1992.

[45] K. Braa. Priority workshops: springboard for user participation in redesign
activities. In Proceedings of conference on Organizational computing sys-
tems - COCS ’95, pages 258–267, Milpitas, CA, USA, Aug. 1995. ACM
Press.

[46] K. Braa, T. Bratteteig, J. Kaasboll, and L. Ogrim. ENtry to the FIRE
Project. Technical report, University of Oslo, Department of Informatics,
Oslo, 1992.

[47] P. J. Brown, J. D. Bovey, and C. Xian. Context-aware applications:
from the laboratory to the marketplace. IEEE Personal Communications,
4(5):58–64, 1997.

[48] B. Bruegge. Adaptability and Portability of Symbolic Debuggers. Disserta-
tion, Carnegie-Mellon University, 1985. Available from: http://reports-
archive.adm.cs.cmu.edu/anon/scan/CMU-CS-85-174.pdf.

[49] B. Bruegge and A. H. Dutoit. Object-Oriented Software Engineering Using
UML, Patterns and Java. Prentice Hall, 3rd edition, 2010.

[50] B. Bruegge, D. Harhoff, A. Picot, O. Creighton, M. Fiedler, and
J. Henkel. Open-Source-Software: Eine ökonomische und technische Anal-
yse. Springer Berlin Heidelberg, 2004.

[51] R. Budde, K. Kuhlenkamp, L. Mathiassen, and L. Zullighoven, editors.
Approaches to Prototyping. Springer Verlag, Berlin, Germany, Jan. 1984.

[52] R. Burke. Hybrid recommender systems: Survey and experiments. User
Modeling and User-Adapted Interaction, 12(4):331–370, 2002.

[53] D. T. Campbell and J. Stanley. Experimental and Quasi-Experimental
Designs for Research. Wadsworth Publishing, 1963.

[54] M. Carbone, M. Nielsen, and V. Sassone. A Formal Model for Trust in Dy-
namic Networks. In Proceedings of the First International Conference on
Software Engineering and Formal Methods, pages 54–61, Brisbane, Aus-
tralia, 2003. IEEE, IEEE.

[55] S. K. Card, A. Newell, and T. P. Moran. The Psychology of Human-
Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA,
1983.

197

http://reports-archive.adm.cs.cmu.edu/anon/scan/CMU-CS-85-174.pdf
http://reports-archive.adm.cs.cmu.edu/anon/scan/CMU-CS-85-174.pdf


Bibliography

[56] J. M. Carroll, editor. Scenario-based design: envisioning work and tech-
nology in system development. John Wiley & Sons, Inc. New York, NY,
USA, Sept. 1995.

[57] CASA Research Center - University of Massachusetts Amherst. End User
Integration. Last accessed: 29.08.2012. Available from: http://www.

casa.umass.edu/main/research/end_user_integration/.

[58] M. Castro, M. Costa, and J.-P. Martin. Better bug reporting with better
privacy. In Proceedings of the 13th international conference on Architec-
tural support for programming languages and operating systems, volume 43,
pages 319–328, Seattle, WA, USA, Mar. 2008. ACM.

[59] D. Centola. The spread of behavior in an online social network experiment.
Science, 329(5996):1194–1197, Sept. 2010.

[60] L. Cerejo. The Elements Of The Mobile User Experience. In
Smashing Magazine. Last accessed: 21.07.2012, 2012. Available
from: http://mobile.smashingmagazine.com/2012/07/12/elements-

mobile-user-experience/.

[61] R. Chandy and H. Gu. Identifying spam in the iOS app store. In Pro-
ceedings of the 2nd Joint WICOW/AIRWeb Workshop on Web Quality -
WebQuality ’12, pages 56–59, Lyon, France, 2012. ACM.

[62] N. Chapin, J. Hale, K. Khan, J. Ramil, and W. Tan. Types of software
evolution and software maintenance. Journal of software maintenance and
evolution: Research and Practice, 13(1):3–30, 2001.

[63] P. Checkland. Systems thinking, systems practice. Wiley Press, New York,
USA, 1981.

[64] M. Chen and X. Liu. Predicting Popularity of Online Distributed Ap-
plications: iTunes App Store Case Analysis. In Proceedings of the 2011
iConference, pages 661–663, Seattle, WA, USA, 2011. ACM.

[65] H. W. Chesbrough. Open Innovation: The New Imperative for Creating
and Profiting from Technology, volume 20 of Praeger special studies in
U.S. economic, social, and political issues. Harvard Business School Press,
2003.

[66] P. K. Chilana, A. J. Ko, and J. O. Wobbrock. LemonAid : Selection-Based
Crowdsourced Contextual Help for Web Applications. In CHI’12, pages
1549–1558, Austin, Texas, USA, 2012. ACM.

[67] J. Clause and A. Orso. Camouflage: Automated Sanitization of Field
Data. Technical report, Georgia Institute of Technology, 2009.

198

http://www.casa.umass.edu/main/research/end_user_integration/
http://www.casa.umass.edu/main/research/end_user_integration/
http://mobile.smashingmagazine.com/2012/07/12/elements-mobile-user-experience/
http://mobile.smashingmagazine.com/2012/07/12/elements-mobile-user-experience/


Bibliography

[68] J. Cohen. Statistical Power Analysis for the Behavioral Science. Rout-
ledge, 2nd edition, 1988.

[69] A. Cooper. The Inmates Are Running the Asylum. Sams Publishing, Mar.
1999.

[70] J. Corbin and A. Strauss. Grounded theory research: Procedures, canons,
and evaluative criteria. Qualitative sociology, 13(1), 1990.

[71] D. Crane. Graphic recording in systems design. In PDC ’90: Conference
on Participatory Design, Seattle, WA, USA, 1990.

[72] J. W. Creswell. Research design: Qualitative, quantitative, and mixed
methods approaches. Sage Publications, Inc, 3rd edition, 2008.

[73] B. Dagenais and M. Robillard. Creating and evolving developer docu-
mentation: understanding the decisions of open source contributors. In
Proceedings of the eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering, pages 127–136, Santa Fe, NM, USA,
2010. ACM.

[74] L. Damodaran. User involvement in the systems design process - a practical
guide for users. Behaviour & Information Technology, 15(6):363–377, 1996.

[75] C. R. B. de Souza and D. F. Redmiles. An empirical study of software de-
velopers’ management of dependencies and changes. In Proceedings of the
13th international conference on Software engineering - ICSE ’08, pages
241–250, Leipzig, Germany, 2008. ACM Press.

[76] G.-J. De Vreede and H. G. Sol. Combating organized crime with group-
ware: Facilitating user involvement in information system development.
In D. Coleman, editor, Proceedings of GroupWare ’94 Europe, San Mateo,
CA, USA, 1994. Morgan Kauffman.

[77] M. Degusta. Android Orphans: Visualizing a Sad History of
Support. Last accessed: 18.09.2012, 2011. Available from:
http://theunderstatement.com/post/11982112928/android-

orphans-visualizing-a-sad-history-of-support.

[78] M. Deshpande and G. Karypis. Item-based top-n recommendation algo-
rithms. ACM Transactions on Information Systems, 22(1):143–177, Jan.
2004.

[79] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. From Game Design
Elements to Gamefulness: Defining "Gamification". In Proceedings of the
15th International Academic MindTrek Conference: Envisioning Future
Media Environments, pages 9–15, Tampere, Finland, 2011. ACM.

199

http://theunderstatement.com/post/11982112928/android-orphans-visualizing-a-sad-history-of-support
http://theunderstatement.com/post/11982112928/android-orphans-visualizing-a-sad-history-of-support


Bibliography

[80] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: deterministic shared
memory multiprocessing. In ASPLOS ’09, pages 85–96, Washington, DC,
USA, 2009. ACM.

[81] A. K. Dey. Context-aware computing: The CyberDesk project. In AAAI
1998 Spring Symposium on Intelligent Environments, pages 51–54, Palo
Alto, CA, USA, 1998. AAAI Press.

[82] A. K. Dey and G. D. Abowd. Towards a Better Understanding of Context
and Context-Awareness. In Proceedings of the CHI 2000 Workshop on The
What, Who, Where, When, and How of Context-Awareness, pages 1–12,
The Hague, Netherlands, 2000.

[83] J. B. Disbrow and B. Igou. Application Software: Maintenance and Sup-
port Guidelines. Technical report, Gartner Research, 2008. Available from:
http://www.gartner.com/id=844119.

[84] S. M. Dray. Understanding and supporting successful group work in soft-
ware design: Lessons from IDS. In Proceedings of the Computer Supported
Cooperative Work (CSCW ’92) Conference, Toronto, Canda, 1992. ACM.

[85] E. A. Dykstra and R. P. Carasik. Structure and support in cooperative
environments: the Amsterdam Conversation Environment. International
Journal of Man-Machine Studies, 34(3):419–434, Mar. 1991.

[86] K. D. Eason. User-centred design: for users or by users? Ergonomics,
38(8):1667–1673, Aug. 1995.

[87] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting Em-
pirical Methods for Software Engineering Research. In F. Shull, J. Singer,
and D. I. K. Sjøberg, editors, Guide to Advanced Empirical Software En-
gineering, pages 285–311. Springer-Verlag London, 2008.

[88] A. Eastwood. Firm fires shots at legacy systems. Computing Canada,
19(2):17, 1993.

[89] eBay Inc. eBay. Last accessed: 01.08.2012. Available from: http://www.
ebay.com.

[90] Edgewall Software. Ticket Types. Last accessed: 13.09.2012, 2012. Avail-
able from: http://trac.edgewall.org/wiki/TicketTypes.

[91] P. Ehn and M. Kyng. Cardboard computers: mocking-it-up or hands-on
the future. In Design at work: Cooperative design of computer systems,
pages 169–196. Erlbaum, Hillsdale, NJ, USA, Jan. 1992.

200

http://www.gartner.com/id=844119
http://www.ebay.com
http://www.ebay.com
http://trac.edgewall.org/wiki/TicketTypes


Bibliography

[92] P. Ehn and D. Sjögren. From system descriptions to scripts for action. In
Design at work: Cooperative design of computer systems, pages 241–268.
Erlbaum, Hillsdale, NJ, USA, Jan. 1992.

[93] P. Elmer-DeWitt. 600 filmmakers sign complaint about Fi-
nal Cut Pro X. Last accessed: 08.12.2012, 2011. Available
from: http://tech.fortune.cnn.com/2011/06/27/600-filmmakers-

sign-complaint-about-final-cut-pro-x/.

[94] Elsevier. ScienceDirect. Last accessed: 28.08.2012, 2012. Available from:
http://www.sciencedirect.com.

[95] C. Endres, A. Butz, and A. MacWilliams. A Survey of Software Infras-
tructures and Frameworks for Ubiquitous Computing. Mobile Information
Systems, 1(1):41–80, 2005.

[96] E. Enkel, J. Perez-Freije, and O. Gassmann. Minimizing Market Risks
Through Customer Integration in New Product Development: Learning
from Bad Practice. Creativity and Innovation Management, 14(4):425–
437, Dec. 2005.

[97] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. An Environment
for the Development of Knowledge-based Recommender Applications. In-
ternational Journal of Electronic Commerce (IJEC), 11(2):11–34, 2006.

[98] A. Felfernig, M. Schubert, M. Mandl, F. Ricci, and W. Maalej. Recom-
mendation and decision technologies for requirements engineering. In Pro-
ceedings of the 2nd International Workshop on Recommendation Systems
for Software Engineering - RSSE ’10, pages 11–15, Cape Town, South
Africa, 2010. ACM.

[99] A. Felfernig, C. Zehentner, G. Ninaus, H. Grabner, W. Maalej, D. Pagano,
L. Weninger, and F. Reinfrank. Group Decision Support for Requirements
Negotiation. In L. Ardissono and T. Kuflik, editors, Advances in User
Modeling - Lecture Notes in Computer Science Volume 7138, volume 7138
of Lecture Notes in Computer Science, pages 105–116. Springer Berlin
Heidelberg, 2012.

[100] R. T. Fielding and R. N. Taylor. Principled design of the modern Web
architecture. ACM Transactions on Internet Technology, 2(2):115–150,
May 2002.

[101] C. Floyd. STEPS - a methodical approach to PD. Communications of the
ACM, 36(6):83, June 1993.

201

http://tech.fortune.cnn.com/2011/06/27/600-filmmakers-sign-complaint-about-final-cut-pro-x/
http://tech.fortune.cnn.com/2011/06/27/600-filmmakers-sign-complaint-about-final-cut-pro-x/
http://www.sciencedirect.com


Bibliography

[102] B. Flyvbjerg. Five Misunderstandings About Case-Study Research. Qual-
itative Inquiry, 12(2):219–245, Apr. 2006.

[103] J. Forlizzi and K. Battarbee. Understanding experience in interactive
systems. In Proceedings of the 2004 conference on Designing interactive
systems processes, practices, methods, and techniques - DIS ’04, pages
261–268, Cambridge, MA, USA, 2004. ACM.

[104] J. Forlizzi and S. Ford. The Building Blocks of Experience: An Early
Framework for Interaction Designers. In Proceedings of the 3rd confer-
ence on Designing Interactive Systems: processes, practices, methods, and
techniques (DIS ’00), pages 419–423, Brooklyn, NY, USA, 2000. ACM.

[105] S. T. J. Foster and C. R. Franz. User involvement during information
systems development: a comparison of analyst and user perceptions of
system acceptance. Journal of Engineering and Technology Managament,
16(1999):329–348, 1999.

[106] Foursquare Labs Inc. Foursquare. Last accessed: 01.08.2012.

[107] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, J. A. Landay, S. B.
Street, and S. Mateo. MyExperience: A System for In situ Tracing and
Capturing of User Feedback on Mobile Phones. In Proceedings of the
5th international conference on Mobile systems, applications and services
(MobiSys ’07), pages 57–70, San Juan, Puerto Rico, 2007. ACM.

[108] J. J. Garrett. The Elements of User Experience: User-Centered Design
for the Web. New Riders, 2003.

[109] S. Gärtner and K. Schneider. A Method for Prioritizing End-User Feed-
back for Requirements Engineering. In 5th International Workshop on Co-
operative and Human Aspects of Software Engineering (CHASE), pages
47–49, Zurich, Switzerland, 2012. IEEE.

[110] Get Satisfaction Inc. Online Community Software. Last accessed: 8.4.2012.
Available from: http://getsatisfaction.com.

[111] B. G. Glaser and A. L. Strauss. The Discovery of Grounded Theory: Strate-
gies for Qualitative Research. Aldine Transaction, 1967.

[112] J. Godfrey, M. W. Reed, and E. W. Herndon. Apps Across America - The
Economics and Ecosystem of the Mobile App Market. Technical report,
Association for Competitive Technology, Washington, DC, USA, 2012.
Available from: http://actonline.org/files/Apps-Across-America.

pdf.

202

http://getsatisfaction.com
http://actonline.org/files/Apps-Across-America.pdf
http://actonline.org/files/Apps-Across-America.pdf


Bibliography

[113] M. W. Godfrey and D. M. German. The past, present, and future of
software evolution. In Frontiers of Software Maintenance, pages 129–138,
Beijing, China, Sept. 2008. IEEE.

[114] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A Secure Environ-
ment for Untrusted Helper Applications (Confining the Wily Hacker). In
Proceedings of the 6th conference on USENIX Security Symposium, Fo-
cusing on Applications of Cryptography, pages 1–13, San Jose, CA, USA,
1996. ACM.

[115] J. D. Gould and C. Lewis. Designing for Usability - Key Principles and
What Designers Think. In Proceedings of the SIGCHI conference on Hu-
man Factors in Computing Systems, pages 50–53, Boston, MA, USA, 1983.
ACM.

[116] J. D. Gould and C. Lewis. Designing for Usability: Key Principles and
What Designers Think. Communications of the ACM, 28(3):300–311,
1985.

[117] J. Greenbaum and K. H. Madsen. Small changes: Starting a participa-
tory design process by giving participants a voice. In D. Schuler and
A. Namioka, editors, Participatory design: Principles and practices. Erl-
baum, Hillsdale, NJ, USA, 1993.

[118] K. Grønbæk and P. Mogensen. Specific Cooperative Analysis and De-
sign in General Hypermedia Development. In PDC ’94: Proceedings of
the Participatory Design Conference, pages 159–171, Chapel Hill, North
Carolina, USA, 1994.

[119] G. Grote. A participatory approach to the complementary design of highly
automated work systems. In G. Bradley and H. W. Hendrik, editors, Hu-
man factors in organizational design and management–IV. Elsevier, Am-
sterdam, 1994.

[120] J. Grudin. Interactive systems: bridging the gaps between developers and
users. IEEE Computer, 24(4):59–69, 1991.

[121] J. Grudin. Systematic Sources of Suboptimal Interface Design in Large
Product Development Organizations. Human-Computer Interaction,
6(2):147–196, June 1991.

[122] N. Gurbanova. Presenting User and Context Information to Developers
during Bug Fixing. Master’s thesis, Technische Universität München, 2012.

[123] A. Guzzi, M. Pinzger, and A. van Deursen. Combining micro-blogging
and IDE interactions to support developers in their quests. In IEEE

203



Bibliography

International Conference on Software Maintenance (ICSM), pages 1–5,
Timisoara, Romania, 2010. IEEE.

[124] E. V. Halpern. User Involvement in the Systems Analysis Functions. ACM
SIGCPR Computer Personnel, 6(1-2), 1977.

[125] S. Harker. Using case studies in the iterative development of a methodology
to support user-designer collaboration. In INTERACT ’93 and CHI ’93
conference companion on Human factors in computing systems - CHI ’93,
pages 57–58, Amsterdam, The Netherlands, Apr. 1993. ACM.

[126] M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis: MSR for
app stores. In 9th IEEE Working Conference on Mining Software Reposi-
tories (MSR), pages 108–111, Zurich, Switzerland, June 2012. IEEE.

[127] P. M. Hartigan and J. A. Hartigan. The dip test of unimodality. Annals
of Statistics, 13(1):70–84, 1985.

[128] V. Hartkopf, V. Loftness, A. Mahdavi, S. Lee, and J. Shankavaram. An
integrated approach to design and engineering of intelligent buildings-The
Intelligent Workplace at Carnegie Mellon University. Automation in Con-
struction, 6(5-6):401–415, Sept. 1997.

[129] V. Hartkopf, V. Loftness, P. Mill, and M. Siegel. Architecture and Software
for Interactive Learning about Total Building Performance: Experience
Based or Occupancy Expert Systems. In Y. Kalay, editor, Evaluating and
Predicting Design Performance, chapter 11. John Wiley & Sons, Inc. New
York, NY, USA, 1992.

[130] M. Hassenzahl. The Thing and I: Understanding the Relationship Between
User and Product. In M. A. Blythe, K. Overbeeke, A. F. Monk, and P. C.
Wright, editors, Funology. From Usability to Enjoyment, chapter 3, pages
31–42. Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.

[131] M. Hassenzahl, A. Beu, and M. Burmester. Engineering Joy. IEEE Soft-
ware, 18(1):70–76, 2001.

[132] M. Hassenzahl and N. Tractinsky. User experience - a research agenda.
Behaviour & Information Technology, 25(2):91–97, Mar. 2006.

[133] R. Hastie and R. Kameda. The Robust Beauty of Majority Rules in Group
Decisions. Psychological Review, 112(2):80–86, 2005.

[134] B. Hedberg. Computer systems to support industrial democracy. In
E. Mumford and H. Sackman, editors, Human Choice and Computers.
1975.

204



Bibliography

[135] T. Heinbokel, S. Sonnentag, M. Frese, W. Stolte, and F. C. Brodbeck.
Don’t underestimate the problems of user centredness in software devel-
opment projects - there are many! Behaviour & Information Technology,
15(4):226–236, 1996.

[136] J. Heiskari and L. Lehtola. Investigating the State of User Involvement in
Practice. In Proceedings of 16th Asia-Pacific Software Engineering Con-
ference, pages 433–440, Penang, Malaysia, 2009. IEEE.

[137] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating Collabora-
tive Filtering Recommender Systems. ACM Transactions on Information
Systems, 1(22):5–53, 2004.

[138] K. Holtzblatt and S. Jones. Contextual inquiry: A participatory technique
for system design. In D. Schuler and A. Namioka, editors, Participatory
design: Principles and practices, pages 177–210. Erlbaum, Hillsdale, NJ,
USA, 1993.

[139] Y. Hong, J. Lu, and J. Yao. What Reviews are Satisfactory: Novel Features
for Automatic Helpfulness Voting. In Proceedings of the 35th international
ACM SIGIR conference on Research and development in information re-
trieval, pages 495–504, Portland, Oregon, USA, 2012. ACM.

[140] K.-Y. Huang. Challenges in human-computer interaction design for mo-
bile devices. In Proceedings of the World Congress on Engineering and
Computer Science, San Francisco, CA, USA, 2009.

[141] IEEE. IEEE Xplore. Last accessed: 28.08.2012, 2012. Available from:
http://ieeexplore.ieee.org/Xplore/dynhome.jsp.

[142] IEEE Computer Society. IEEE Standard for Configuration Management
in Systems and Software Engineering. Technical Report March, 2012.

[143] International Organization for Standardization. ISO 9241-11:1998. Er-
gonomics of Human System Interaction: Guidance on usability. Technical
report, Geneva, Switzerland, 1998.

[144] International Organization for Standardization. ISO/IEC 14764. Software
Engineering - Software Life Cycle Processes - Maintenance. Technical
report, Geneva, Switzerland, 2006.

[145] International Organization for Standardization. ISO FDIS 9241-210:2009.
Ergonomics of human system interaction - Part 210: Human-centered de-
sign for interactive systems. Technical report, Geneva, Switzerland, 2009.

[146] B. Ives and M. H. Olson. User Involvement and MIS Success: a Review
of Research. Management Science, 30(5), 1984.

205

http://ieeexplore.ieee.org/Xplore/dynhome.jsp


Bibliography

[147] A. Jameson, S. Baldes, and T. Kleinbauer. Two Methods for Enhancing
Mutual Awareness in a Group Recommender System. In Proceedings of the
working conference on Advanced visual interfaces, pages 447–449. ACM,
2004.

[148] A. Jameson and B. Smyth. Recommendation to Groups. In P. Brusilovsky,
A. Kobsa, and W. Nejdl, editors, The Adaptive Web, LNCS 4321, pages
596–627. Springer-Verlag Berlin Heidelberg, 2007.

[149] R. Jameson. What is an Issue. Last accessed: 13.09.2012, 2012. Avail-
able from: https://confluence.atlassian.com/display/JIRA/What+

is+an+Issue.

[150] S. Jobs. The Entrepreneur of the Decade Award, 1989. Available from:
http://www.inc.com/magazine/19890401/5602.html.

[151] A. Jøsang. Trust-Based Decision Making for Electronic Transactions. In
Proceedings of the Fourth Nordic Workshop on Secure Computer Systems
(NORDSEC’99), pages 1–21, Kista, Sweden, 1999.

[152] A. Jøsang. A logic for uncertain probabilities. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 9(3):279–311, 2001.

[153] A. Jøsang and R. Ismail. The beta reputation system. In Proceedings of
the 15th Bled Electronic Commerce Conference, Bled, Slovenia, 2002.

[154] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems, 43(2):618–
644, Mar. 2007.

[155] A. Kankainen. Thinking model and tools for understanding user experience
related to information appliance product concepts. Dissertation, Helsinki
University of Technology, 2002.

[156] A. Kanstrup and E. Christiansen. Selecting and evoking innovators: com-
bining democracy and creativity. In Proceedings of the 4th Nordic confer-
ence on Human-computer interaction, pages 321–330. ACM, 2006.

[157] A. M. Kaplan and M. Haenlein. Users of the world, unite! The challenges
and opportunities of Social Media. Business Horizons, 53(1):59–68, Jan.
2010.

[158] F. Kensing and K. H. Madsen. Generating visions: future workshops and
metaphorical design. In J. Greenbaum and M. Kyng, editors, Design at
work: Cooperative design of computer systems, pages 155–168. Erlbaum,
Hillsdale, NJ, USA, Jan. 1992.

206

https://confluence.atlassian.com/display/JIRA/What+is+an+Issue
https://confluence.atlassian.com/display/JIRA/What+is+an+Issue
http://www.inc.com/magazine/19890401/5602.html


Bibliography

[159] F. Kensing and A. Munk-Madsen. PD: structure in the toolbox. Commu-
nications of the ACM, 36(6):78–85, June 1993.

[160] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with Me-
chanical Turk. In Proceeding of the twenty-sixth annual CHI conference on
Human factors in computing systems - CHI ’08, pages 453–456, Florence,
Italy, 2008. ACM.

[161] A. Kjær and K. H. Madsen. Participatory analysis of flexibility. Commu-
nications of the ACM, 38(5):53–60, May 1995.

[162] A. J. Ko, M. J. Lee, V. Ferrari, S. Ip, and C. Tran. A case study of post-
deployment user feedback triage. In Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of Software Engineering -
CHASE ’11, pages 1–8, Honolulu, HI, USA, 2011. ACM.

[163] J. A. Konstan, J. Riedl, A. I. Borchers, and J. L. Herlocker. Recommender
Systems: A GroupLens Perspective. In Recommender Systems: Papers
from the 1998 Workshop (AAAI Technical Report WS-98-08), pages 60–
64, Menlo Park, CA, 1998. AAAI Press.

[164] J. Kontio, J. Bragge, and L. Lehtola. The Focus Group Method as an Em-
pirical Tool in Software Engineering. In F. Shull, J. Singer, and D. I. K.
Sjøberg, editors, Guide to Advanced Empirical Software Engineering, chap-
ter 4. Springer-Verlag London, 2008.

[165] S. Kujala. User involvement: a review of the benefits and challenges.
Behaviour & information technology, 22(1):1–16, 2003.

[166] S. Kujala and M. Kauppinen. Identifying and selecting users for user-
centered design. In Proceedings of the third Nordic conference on Human-
computer interaction - NordiCHI ’04, pages 297–303, Tampere, Finland,
2004. ACM.

[167] S. Kujala, M. Kauppinen, L. Lehtola, and T. Kojo. The role of user
involvement in requirements quality and project success. In 13th IEEE
International Conference on Requirements Engineering (RE’05), pages 75–
84, Paris, France, 2005. IEEE.

[168] D. Lafrenière. CUTA: a simple, practical, low-cost approach to task anal-
ysis. interactions, 3(5):35–39, Sept. 1996.

[169] A. Landini. Final Cut Pro X is Not a Professional Application,
2011. Available from: http://www.petitiononline.com/finalcut/

petition.html.

207

http://www.petitiononline.com/finalcut/petition.html
http://www.petitiononline.com/finalcut/petition.html


Bibliography

[170] E. L.-C. Law, V. Roto, M. Hassenzahl, A. Vermeeren, and J. Kort. Un-
derstanding, Scoping and Defining User eXperience: A Survey Approach.
In CHI ’09: Proceedings of the 27th international conference on Human
factors in computing systems, pages 719–728, Boston, MA, USA, 2009.
ACM.

[171] M. Lehman. Programs, life cycles, and laws of software evolution. Pro-
ceedings of the IEEE, 68(9):1060–1076, 1980.

[172] R. Levien. Attack Resistant Trust Metrics. Ph. d. thesis, UC Berkeley,
2004.

[173] B. Libert. Social Nation: How to Harness the Power of Social Media to
Attract Customers, Motivate Employees, and Grow Your Business. Wiley,
2010.

[174] R. Likert. A technique for the measurement of attitudes. Archives of
Psychology, 140(140):1–55, 1932.

[175] V. Loftness. Improving Building Energy Efficiency in the U.S: Technologies
and Policies for 2010 to 2050. In Proceedings of the Pew Center/NCEP
Workshop on the 10-50 Solution - Technologies and Policies for a Low-
Carbon Future, pages 60–68, Washington, DC, USA, 2004.

[176] S. Lohmann, S. Dietzold, P. Heim, and N. Heino. A Web Platform for
Social Requirements Engineering. In Proceedings of Software Engineering
(Workshops), pages 309–315. GI, 2009.

[177] G. Longworth. A User’s Guide to SSADM Version 4. NCC Blackwell,
Oxford, 1992.

[178] J. Lowensohn. Petition seeks to bring back old Final Cut Pro. Last ac-
cessed: 08.12.2012, 2011. Available from: http://news.cnet.com/8301-
27076_3-20074841-248/petition-seeks-to-bring-back-old-final-

cut-pro/.

[179] W. Maalej. Intention-Based Integration of Software Engineering Tools.
Dissertation, Technische Universität München, 2010.

[180] W. Maalej and H.-J. Happel. Can development work describe itself? In 7th
IEEE Working Conference on Mining Software Repositories (MSR 2010),
pages 191–200, Cape Town, South Africa, May 2010. IEEE.

[181] W. Maalej, H.-J. H. Happel, and A. Rashid. When users become collabo-
rators: towards continuous and context-aware user input. In OOPSLA ’09:
Proceeding of the 24th ACM SIGPLAN conference companion on Object

208

http://news.cnet.com/8301-27076_3-20074841-248/petition-seeks-to-bring-back-old-final-cut-pro/
http://news.cnet.com/8301-27076_3-20074841-248/petition-seeks-to-bring-back-old-final-cut-pro/
http://news.cnet.com/8301-27076_3-20074841-248/petition-seeks-to-bring-back-old-final-cut-pro/


Bibliography

oriented programming systems languages and applications, pages 981–990,
Orlando, FL, USA, 2009. ACM.

[182] W. Maalej and D. Pagano. On the Socialness of Software. In Proceedings
of the International Conference on Social Computing and its Applications,
Sydney, Australia, 2011. IEEE.

[183] W. Maalej, D. Panagiotou, and H.-J. Happel. Towards Effective Manage-
ment of Software Knowledge Exploiting the Semantic Wiki Paradigm. In
K. Herrmann and B. Brügge, editors, Software Engineering, pages 183–
197, Bonn, Germany, 2008. GI.

[184] L. Macaulay. Cooperation in understanding user needs and requirements.
Computer Integrated Manufacturing Systems, 8(2):155–165, May 1995.

[185] N. Machado, P. Romano, and L. Rodrigues. Lightweight Cooperative
Logging for Fault Replication in Concurrent Programs. In Proceedings
of the 42nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2012), Boston, MA, USA, 2012. IEEE.

[186] A. MacLean, K. Carter, L. Lövstrand, and T. Moran. User-tailorable
systems: pressing the issues with buttons. In Proceedings of the SIGCHI
conference on Human factors in computing systems Empowering people -
CHI ’90, pages 175–182, Seattle, WA, USA, Mar. 1990. ACM.

[187] K. H. Madsen and P. H. Aiken. Experiences using cooperative interactive
storyboard prototyping. Communications of the ACM, 36(6):57–64, June
1993.

[188] U. Malinowski and K. Nakakoji. Using computational critics to facilitate
long-term collaboration in user interface design. In Proceedings of the
SIGCHI conference on Human factors in computing systems - CHI ’95,
pages 385–392, Denver, CO, USA, May 1995. ACM.

[189] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann.
Design Lessons from the Fastest Q&A Site in the West. In Proceedings
of the 2011 annual conference on Human factors in computing systems -
CHI ’11, pages 2857–2866, Vancouver, BC, Canada, May 2011. ACM.

[190] D. W. Manchala. Trust Metrics, Models and Protocols for Electronic Com-
merce Transactions. In Proceedings of the 18th International Conference
on Distributed Computing Systems, pages 312–321, Amsterdam, Nether-
lands, 1998. IEEE.

[191] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

209



Bibliography

[192] P. Y. Martin and B. A. Turner. Grounded Theory and Organizational
Research. The Journal of Applied Behavioral Science, 22(2):141–157, Apr.
1986.

[193] K. McCarthy, M. Salamó, L. Coyle, L. McGinty, B. Smyth, and P. Nixon.
Group recommender systems: a critiquing based approach. In Proceedings
of the 11th international conference on Intelligent user interfaces, pages
267–269, Sydney, Australia, 2006. ACM.

[194] A. McFarland and T. Dayton. A participatory methodology for driving
object-oriented GUI design from user needs. In Proceedings of OZCHI95,
the CHISIG Annual Conference on Human-Computer Interaction, Wol-
longong, New South Wales, Australia, 1995.

[195] F. C. Mish, editor. Merriam-Webster’s Collegiate Dictionary. Merriam-
Webster, USA, 11th edition, 2003.

[196] L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model of
trust and reputation. In Proceedings of the 35th Hawaii International Con-
ference on System Sciences, pages 1–9, Waikoloa, HI, USA, 2002. IEEE.

[197] M. J. Muller. PICTIVE - an exploration in participatory design. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems
Reaching through technology - CHI ’91, pages 225–231, New Orleans, LA,
USA, Mar. 1991. ACM.

[198] M. J. Muller, J. Hallewell Haslwanter, and T. Dayton. Participatory Prac-
tices in the Software Lifecycle. In M. Helander, T. K. Landauer, and
P. Prabh, editors, Handbook of Human-Computer Interaction, chapter 11,
pages 255–297. Elsevier Science B.V, 2nd edition, 1997.

[199] M. J. Muller, A. McLard, B. Bell, S. Dooley, L. Meiskey, J. A. Meskill,
R. Sparks, and D. Tellam. Validating an Extension to Participatory
Heuristic Evaluation: Quality of Work and Quality of Work Life. In Pro-
ceedings of CHI ’95 Conference Companion on Human Factors in Com-
puting Systems, pages 115–116, Denver, CO, USA, 1995. ACM.

[200] M. J. Muller, L. G. Tudor, D. M. Wildman, E. A. White, R. W. Root,
T. Dayton, R. Carr, B. Diekmann, and E. Dykstra-Erickson. Bifocal tools
for scenarios and representations in participatory activities with users. In
J. Carroll, editor, Scenario-based design, pages 135–163. John Wiley &
Sons, Inc. New York, NY, USA, Sept. 1995.

[201] M. J. Muller, D. M. Wildman, and E. A. White. Participatory design
through games and other group exercises. In Conference companion on

210



Bibliography

Human factors in computing systems - CHI ’94, pages 411–412, Boston,
MA, USA, Apr. 1994. ACM.

[202] E. Mumford. Consensus Systems Design: An Evaluation of this Approach.
In N. Szyperski and E. Grochela, editors, Design and Implementation of
Computer-Based Information Systems. Sijthoff & Noordhoff, Groningen,
Netherlands, 1979.

[203] E. Mumford and M. Weir. Computer systems in work design–The ETHICS
method: Effective technical and human implementation of computer sys-
tems. Wiley Press, New York, USA, 1979.

[204] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging. In
32nd International Symposium on Computer Architecture (ISCA’05),
pages 284–295, Madison, WI, USA, 2005. IEEE.

[205] J. Nielsen. Usability Engineering. Morgan Kaufmann, San Francisco, CA,
USA, 1993.

[206] J. Nielsen. The Use and Misuse of Focus Groups. IEEE Software, 14(1):94–
95, 1997.

[207] J. Nielsen. First Rule of Usability? Don’t Listen to Users. Last accessed:
08.12.2012, 2001. Available from: http://www.useit.com/alertbox/

20010805.html.

[208] D. A. Norman. The Design of Everyday things. MIT Press, London,
England, 2002.

[209] D. A. Norman and S. W. Draper. User Centered System Design; New
Perspectives on Human-Computer Interaction. Erlbaum, 1986.

[210] D. A. Norman, J. Miller, and A. Henderson. What You See, Some of
What’s in the Future, And How We Go About Doing It: HI at Apple
Computer. In CHI ’95 Conference companion on Human factors in com-
puting systems, page 155, Denver, Colorado, USA, 1995. ACM.

[211] K. Noro and A. S. Imada, editors. Participatory ergonomics. Taylor and
Francis, London, England, 1991.

[212] B. Nuseibeh and S. Easterbrook. Requirements Engineering: A Roadmap.
In Conference on the Future of Software Engineering, pages 35–46, Lim-
erick, Ireland, 2000. ACM.

211

http://www.useit.com/alertbox/20010805.html
http://www.useit.com/alertbox/20010805.html


Bibliography

[213] M. O’Connor, D. Cosley, J. Konstan, and J. Riedl. PolyLens: A recom-
mender system for groups of users. In European Conference on Computer-
Supported Cooperative Work, pages 199–218, 2001.

[214] S. Olejnik and J. Algina. Measures of Effect Size for Comparative Studies:
Applications, Interpretations, and Limitations. Contemporary educational
psychology, 25(3):241–286, July 2000.

[215] T. O’Reilly. What Is Web 2.0, 2005. Available from: http://oreilly.

com/web2/archive/what-is-web-20.html?page=4.

[216] D. Özçelik Buskermolen, J. Terken, and B. Eggen. Informing User Ex-
perience Design About Users: Insights from Practice. In Proceedings of
the 2012 ACM annual conference extended abstracts on Human Factors in
Computing Systems Extended Abstracts (CHI EA’12), pages 1757–1762,
Austin, Texas, USA, 2012. ACM.

[217] D. Pagano. Towards Systematic Analysis of Continuous User Input. In
Proceedings of the 4th International Workshop on Social Software Engi-
neering, pages 6–10, Szeged, Hungary, 2011. ACM.

[218] D. Pagano and B. Bruegge. User Involvement in Software Evolution Prac-
tice: A Case Study. In Proceedings of the 35th International Conference
on Software Engineering, San Francisco, CA, USA, 2013. IEEE.

[219] D. Pagano, M. A. Juan, A. Bagnato, T. Roehm, B. Bruegge, and
W. Maalej. FastFix: Monitoring Control for Remote Software Mainte-
nance. In Proceedings of the 34th International Conference of Software
Engineering, pages 1437–1438, Zurich, Switzerland, 2012. IEEE.

[220] D. Pagano and W. Maalej. How Do Developers Blog? An Exploratory
Study. In Proceedings of the 8th Working Conference on Mining Software
Repositories, pages 123–132, Honolulu, HI, USA, 2011. ACM.

[221] D. Pagano and W. Maalej. How Do Open Source Communities Blog?
International Journal on Empirical Software Engineering, (May), 2012.

[222] D. Pagano and W. Maalej. User Feedback in the AppStore: An Empirical
Study. In Proceedings of the 21st International Requirements Engineering
Conference, Rio de Janeiro, Brasil, 2013. IEEE.

[223] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical report, Stanford InfoLab,
1999. Available from: http://ilpubs.stanford.edu:8090/422.

[224] Ø. Pålshaugen. Method of designing a starting conference. Technical
report, Work Research Institute, Oslo, 1986.

212

http://oreilly.com/web2/archive/what-is-web-20.html?page=4
http://oreilly.com/web2/archive/what-is-web-20.html?page=4
http://ilpubs.stanford.edu:8090/422


Bibliography

[225] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu.
Pres: probabilistic replay with execution sketching on multiprocessors. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 177–192, Big Sky, MT, USA, 2009. ACM, ACM.

[226] C. Parnin and C. Treude. Measuring API documentation on the web. In
Proceedings of the 2nd International Workshop on Web 2.0 for Software
Engineering, pages 25–30, Honolulu, HI, USA, 2011. ACM.

[227] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey. Crowd Documen-
tation: Exploring the Coverage and the Dynamics of API Discussions on
Stack Overflow. Technical report, Georgia Institute of Technology, 2012.

[228] F. Paternò, A. Piruzza, and C. Santoro. Remote Web usability evalua-
tion exploiting multimodal information on user behavior. In G. Calvary,
C. Pribeanu, G. Santucci, and J. Vanderdonckt, editors, Computer-Aided
Design of User Interfaces V, pages 287–298. Springer Netherlands, 2007.

[229] M. Pazzani and D. Billsus. Learning and Revising User Profiles: The
Identification of Interesting Web Sites. Machine Learning, 27:313–331,
1997.

[230] M. J. Pazzani and D. Billsus. Content-Based Recommendation Systems.
In P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The Adaptive Web,
LNCS 4321, pages 325–341. Springer-Verlag Berlin Heidelberg, 2007.

[231] S. M. Peters. A Framework for the Intuitive Control of Smart Home and
Office Environments. Master’s thesis, Technische Universität München,
2011.

[232] K. Pohl. Process-Centered Requirements Engineering. John Wiley and
Sons, 1996.

[233] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., Sept. 2005.

[234] A. Porterfield, P. Khare, and A. Vahl. Facebook Marketing All-in-One for
Dummies. John Wiley and Sons, 2011.

[235] A. Rashid. OpenProposal: Towards Collaborative End-User Participation
in Requirements Management By Usage of Visual Requirement Specifica-
tions. In 15th IEEE International Requirements Engineering Conference
(RE 2007), pages 371–374, New Delhi, India, 2007. IEEE.

213



Bibliography

[236] A. Rashid, J. Wiesenberger, D. Meder, and J. Baumann. Bringing develop-
ers and users closer together: The OpenProposal story. In Multikonferenz
Wirtschaftsinformatik, 2008.

[237] M. Reinhardt, G. Groh, and M. Wiener. Web 2.0 driven Open Innovation
Networks-A Social Network Approach to Support the Innovation Context
within Companies. In MKWI 2010 - E-Commerce and E-Business, pages
1177–1190, Göttingen, Germany, 2010. Universitätsverlag Göttingen.

[238] P. Resnick. Trust among strangers in Internet transactions: Empirical
analysis of eBay’s reputation system. Advances in Applied Microeconomics,
11(The Economics of the Internet and E-Commerce):1–26, 2002.

[239] F. Ricci, L. Rokach, B. Shapira, and P. Kantor, editors. Recommender
Systems Handbook. Springer Verlag, 1st edition, 2011.

[240] W. M. Riggs and E. von Hippel. The Impact of Scientific and Commercial
Values on the Sources of Scientific Instrument Innovation. Research Policy,
23:459–469, 1992.

[241] M. P. Robillard, R. J. Walker, and T. Zimmermann. Recommendation
Systems for Software Engineering. IEEE Software, 27(4):80–86, 2010.

[242] C. Robson. Real World Research. Wiley & Sons, 3rd edition, 2011.

[243] J. L. Rodgers and W. A. Nicewander. Thirteen Ways to Look at the
Correlation Coefficient. The American Statistician, 42(1):59–66, 1988.

[244] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do professional de-
velopers comprehend software? In 2012 34th International Conference on
Software Engineering (ICSE), pages 255–265, Zurich, Switzerland, 2012.
IEEE.

[245] S. Rosenbaum, J. A. Rohn, and J. Humburg. A Toolkit for Strategic
Usability: Results from Workshops, Panels, and Surveys. In CHI ’00:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 337–344, The Hague, Netherlands, 2000. ACM.

[246] R. Rothwell, C. Freeman, A. Horlsey, V. T. P. Jervis, A. B. Robertson, and
J. Townsend. SAPPHO updated - project SAPPHO phase II. Research
Policy, 3(3):258–291, 1974.

[247] V. Roto, E. Law, A. Vermeeren, and J. Hoonhout, editors. User Experi-
ence White Paper. 2011. Available from: http://www.allaboutux.org/

files/UX-WhitePaper.pdf.

214

http://www.allaboutux.org/files/UX-WhitePaper.pdf
http://www.allaboutux.org/files/UX-WhitePaper.pdf


Bibliography

[248] V. Roto, M. Lee, K. Pihkala, B. Castro, A. Vermeeren, E. Law,
K. Väänänen-Vainio-Mattila, J. Hoonhout, and M. Obrist. User ex-
perience definitions. Last accessed: 22.07.2012, 2012. Available from:
http://www.allaboutux.org/ux-definitions.

[249] W. W. Royce. Managing the development of large software systems. Pro-
ceedings of IEEE WESCON 26, (August):1–9, 1970.

[250] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, Dec. 2008.

[251] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[252] J. Sabater and C. Sierra. REGRET: A reputation model for gregarious
societies. In C. Castelfranchi and L. Johnson, editors, Proceedings of the
4th Int. Workshop on Deception, Fraud and Trust in Agent Societies, vol-
ume 73, pages 194–195, Montreal, Canada, 2001. ACM.

[253] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc, New York, NY, USA, Oct. 1986.

[254] E. B. N. Sanders. Participatory design research in the product development
process. In PDC ’92: Proceedings of the Participatory Design Conference,
pages 111–112, Cambridge, MA, USA, 1992.

[255] R. J. Sandusky. Software Problem Management as Information Manage-
ment in a F/OSS Development Community. In Proceedings of the First
International Conference on Open Source Systems, pages 44–49, Genova,
Italy, 2005. IEEE.

[256] B. Schilit, N. Adams, and R. Want. Context-Aware Computing Applica-
tions. In IEEE Workshop on Mobile Computing Systems and Applications,
pages 89–101, Santa Cruz, CA, US, 1994. IEEE.

[257] A. Schmidt, M. Beigl, and H.-W. Gellersen. There is more to context than
location. Computers & Graphics, 23(6):893–901, Dec. 1999.

[258] J. Schneider, G. Kortuem, J. Jager, S. Fickas, and Z. Segall. Dissemi-
nating trust information in wearable communities. Personal Technologies,
4(4):245–248, Dec. 2000.

[259] K. Schneider. Focusing spontaneous feedback to support system evolution.
In 19th International Requirements Engineering Conference, pages 165–
174, Trento, Italy, Aug. 2011. IEEE.

215

http://www.allaboutux.org/ux-definitions


Bibliography

[260] K. Schneider, S. Meyer, M. Peters, F. Schliephacke, J. Mörschbach,
and L. Aguirre. Feedback in Context: Supporting the Evolution of
IT-Ecosystems. In M. Ali Babar, M. Vierimaa, and M. Oivo, editors,
Product-Focused Software Process Improvement, LNCS 6156, pages 191–
205. Springer-Verlag Berlin Heidelberg, 2010.

[261] K. Schwaber. SCRUM Development Process. In Business Object Design
and Implementation Workshop, OOPSLA’95, pages 10–19, Austin, Texas,
USA, 1995.

[262] N. Seyff, F. Graf, and N. Maiden. Using Mobile RE Tools to Give End-
Users Their Own Voice. In IEEE International Conference on Require-
ments Engineering, pages 37–46, Sydney, Australia, 2010. IEEE.

[263] H. Sharp, A. Finkelstein, and G. Galal. Stakeholder identification in the
requirements engineering process. In Proceedings of the 10th International
Workshop on Database and Expert Systems Applications, DEXA 99, pages
387–391, Florence, Italy, 1999. IEEE.

[264] L. Singer and K. Schneider. It was a Bit of a Race: Gamification of Version
Control. In Proceedings of the 2nd international workshop on Games and
software engineering (GAS), pages 5–8, Zurich, Switzerland, June 2012.
IEEE.

[265] R. Sinha. Persona development for information-rich domains. In CHI ’03
extended abstracts on Human factors in computer systems - CHI ’03, page
830, Fort Lauderdale, FL, USA, 2003. ACM.

[266] Springer. SpringerLink. Last accessed: 28.08.2012, 2012. Available from:
http://link.springer.com.

[267] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flashback:
a lightweight extension for rollback and deterministic replay for software
debugging. In Proceedings of the annual conference on USENIX Annual
Technical Conference, pages 3–17, Boston, MA, USA, June 2004.

[268] H. Stangl. Script : A Framework for Scenario-Driven Prototyping. Dis-
sertation, Technische Universität München, 2012.

[269] H. Stangl and O. Creighton. Continuous demonstration. In Fourth Interna-
tional Workshop on Multimedia and Enjoyable Requirements Engineering
(MERE’11), pages 38–41, Trento, Italy, 2011. IEEE.

[270] N. A. Streitz, J. Siegel, V. Hartkopf, and S. Konomi, editors. Coopera-
tive Buildings: Integrating Information, Organizations, and Architecture.
Springer, 1999.

216

http://link.springer.com


Bibliography

[271] TestFlight App Inc. TestFlight. Last accessed: 09.11.2012, 2012. Available
from: https://testflightapp.com.

[272] The Nielsen Company. Led by Facebook, Twitter, Global Time Spent on
Social Media Sites up 82% Year over Year. Last accessed: 09.11.2012, 2010.
Available from: http://blog.nielsen.com/nielsenwire/global/led-

by-facebook-twitter-global-time-spent-on-social-media-sites-

up-82-year-over-year/.

[273] C. Treude and M.-A. Storey. How tagging helps bridge the gap between
social and technical aspects in software development. In ICSE ’09: Pro-
ceedings of the 2009 IEEE 31st International Conference on Software En-
gineering, pages 12–22, Washington, DC, USA, 2009. IEEE Computer
Society.

[274] M. W. Tschudy, E. A. Dykstra-Erickson, and M. S. Holloway. Picture-
CARD : A Storytelling Tool for Task Analysis. In PDC’96 Proceedings
of the Participatory Design Conference., pages 183–191, Cambridge, MA,
USA, 1996.

[275] I. Tuomi. Networks of Innovation: Change and Meaning in the Age of the
Internet. Oxford University Press, USA, 2006.

[276] URCOT. Work mapping: Possible application in the Australia Taxa-
tion Office. Technical report, Union Research Centre on Organisation and
Technology Ltd. (URCOT), Melbourne, Australia, 1994.

[277] UserVoice Inc. Feedback and Online Help Desk Software. Last accessed:
08.04.2012. Available from: http://www.uservoice.com.

[278] A. van Deursen, A. Mesbah, B. Cornelissen, A. Zaidman, M. Pinzger, and
A. Guzzi. Adinda: A Knowledgeable, Browser-Based IDE. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineer-
ing, pages 203–206, Cape Town, South Africa, 2010. ACM.

[279] A. Vargas, H. Weffers, and H. Viera de Rocha. A method for remote
and semi-automatic usability evaluation of web-based applications through
users behavior analysis. In Proceedings of the 7th International Conference
on Methods and Techniques in Behavioral Research, MB’10, Eindhoven,
Netherlands, 2010. ACM.

[280] D. Vergados, A. Alevizos, A. Mariolis, and M. Caragiozidis. Intelligent
services for assisting independent living of elderly people at home. In Pro-
ceedings of the 1st ACM international conference on PErvasive Technolo-
gies Related to Assistive Environments - PETRA ’08, pages 1–4, Athens,
Greece, July 2008. ACM.

217

https://testflightapp.com
http://blog.nielsen.com/nielsenwire/global/led-by-facebook-twitter-global-time-spent-on-social-media-sites-up-82-year-over-year/
http://blog.nielsen.com/nielsenwire/global/led-by-facebook-twitter-global-time-spent-on-social-media-sites-up-82-year-over-year/
http://blog.nielsen.com/nielsenwire/global/led-by-facebook-twitter-global-time-spent-on-social-media-sites-up-82-year-over-year/
http://www.uservoice.com


Bibliography

[281] E. von Hippel. Lead Users: A Source of Novel Product Concepts. Man-
agement Science, 32(7):791–805, July 1986.

[282] E. von Hippel. Innovation by User Communities: Learning from Open-
Source Software. MIT Sloan Management Review, Summer, 2001.

[283] E. von Hippel. Democratizing Innovation. MIT Press, 2005.

[284] K. Vredenburg, J.-Y. Mao, P. W. Smith, and T. Carey. A survey of user-
centered design practice. In Proceedings of the SIGCHI conference on Hu-
man factors in computing systems - CHI ’02, pages 471–478, Minneapolis,
Minnesota, USA, 2002. ACM.

[285] J. West and S. Gallagher. Open Innovation : The Paradox of Firm Invest-
ment in Open Source Software. R&D Management, 36(3), 2004.

[286] A. Whitby, A. Jøsang, and J. Indulska. Filtering out unfair ratings in
bayesian reputation systems. Science, 4(2)(2):106–117, 2004.

[287] M. G. Williams and V. Begg. Translation between software designers and
users. Communications of the ACM, 36(6):102–103, June 1993.

[288] S. Wilson, M. Bekker, P. Johnson, and H. Johnson. Helping and Hin-
dering User Involvement - A Tale of Everyday Design. In Proceedings of
the SIGCHI conference on Human factors in computing systems, Atlanta,
Georgia, 1997. ACM.

[289] D. Wixon, K. Holtzblatt, and S. Knox. Contextual design: an emergent
view of system design. In Proceedings of the SIGCHI conference on Human
factors in computing systems Empowering people - CHI ’90, pages 329–336,
Seattle, WA, USA, Mar. 1990. ACM.

[290] D. R. Wixon, C. M. Pietras, P. K. Huntwork, and D. W. Muzzey. Changing
the rules: a pragmatic approach to product development. In Field methods
casebook for software design, pages 57–89. John Wiley & Sons, Inc. New
York, NY, USA, Sept. 1996.

[291] J. Wood and D. Silver. Joint Application Design. Wiley Press, New York,
USA, 1989.

[292] P. C. Wright and A. F. Monk. A cost-effective evaluation method for use by
designers. International Journal of Man-Machine Studies, 35(6):891–912,
Dec. 1991.

[293] T. Yamakami. A Three-Dimension Analysis of Driving Factors for Mobile
Application Stores: Implications of Open Mobile Business Engineering.

218



Bibliography

In 2011 IEEE Workshop of International Conference on Advanced Infor-
mation Networking and Applications, pages 885–889, Biopolis, Singapore,
2011. IEEE.

[294] E. Young and R. Greenlee. Participatory video prototyping. In Posters and
short talks of the 1992 SIGCHI conference on Human factors in computing
systems - CHI ’92, pages 28–28, Monterey, CA, USA, May 1992. ACM.

[295] M. Zaki. Scalable algorithms for association mining. IEEE Transactions
on Knowledge and Data Engineering, 12(3):372–390, 2000.

[296] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting Repackaged Smart-
phone Applications in Third-Party Android Marketplaces. In Proceedings
of the second ACM conference on Data and Application Security and Pri-
vacy, pages 317–326, San Antonio, Texas, USA, 2012. ACM.

[297] C. N. Ziegler and G. Lausen. Spreading Activation Models for Trust
Propagation. In Proceedings of the IEEE International Conference on e-
Technology, e-Commerce, and e-Service (EEE ’04), Taipei, Taiwan, 2004.

[298] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, and
C. Weiss. What Makes a Good Bug Report? IEEE Transactions on
Software Engineering, 36(5):618–643, Sept. 2010.

219


	1 Introduction
	1.1 Problem Statement
	1.2 Contribution
	1.3 Scope
	1.4 Contents

	2 Foundations
	2.1 User Involvement Definitions
	2.2 User Involvement Methods
	2.2.1 User Role
	2.2.2 User Representation
	2.2.3 Developer Role
	2.2.4 Procedure
	2.2.5 Types of User Information
	2.2.6 Time and Place

	2.3 User Involvement Effects
	2.3.1 Benefits
	2.3.2 Challenges

	2.4 Summary

	3 Empirical Analysis of User Involvement in Practice
	3.1 Study Setting
	3.1.1 Research Questions
	3.1.2 Research Method
	3.1.3 Research Data

	3.2 User Involvement Setting
	3.2.1 Infrastructure
	3.2.2 Frequency
	3.2.3 User-Developer Communication

	3.3 User Involvement Workflow
	3.3.1 Motivation
	3.3.2 Analysis
	3.3.3 Problems

	3.4 User Involvement Requirements
	3.4.1 Tool Support
	3.4.2 Consolidation
	3.4.3 Assessment

	3.5 Discussion
	3.5.1 Implications
	3.5.2 Limitations

	3.6 Related Work
	3.7 Summary

	4 Grounded Theory on Continuous User Involvement
	4.1 Motivation
	4.2 Proposition
	4.3 Methodology
	4.4 Exploratory Study on User Involvement in Open Source Communities
	4.4.1 Research Questions
	4.4.2 Research Method and Data
	4.4.3 Results

	4.5 Exploratory Study on User Feedback in Application Distribution Platforms
	4.5.1 Study Setting
	4.5.2 Results
	4.5.3 Results Validity
	4.5.4 Related Work
	4.5.5 Summary

	4.6 Summary

	5 Proactive and Context-Aware Recommendation of User Feedback
	5.1 Portneuf Model
	5.1.1 Model of User Experience
	5.1.2 Model of User Feedback
	5.1.3 Model of User Feedback Recommendation
	5.1.4 Model of User Feedback Impact

	5.2 Portneuf Applications
	5.2.1 Early Design
	5.2.2 System Testing
	5.2.3 Software Evolution

	5.3 Framework Architecture
	5.3.1 Monitoring
	5.3.2 User Experience Profiling
	5.3.3 User Feedback
	5.3.4 Recommendation
	5.3.5 Analytics

	5.4 Related Work
	5.4.1 User Feedback Research
	5.4.2 User Feedback Systems

	5.5 Summary

	6 Evaluation
	6.1 Framework Implementation
	6.1.1 Formative Evaluation
	6.1.2 Summative Evaluation

	6.2 Evaluation Setting
	6.2.1 Evaluation Questions
	6.2.2 Evaluation Methodology
	6.2.3 Evaluation Data

	6.3 Evaluation Results
	6.3.1 User Feedback Recommendation
	6.3.2 Impact Assessment
	6.3.3 Issues and Improvements

	6.4 Summary

	7 Conclusions and Future Work
	7.1 Contributions
	7.1.1 Status Quo Assessment
	7.1.2 Continuous User Involvement Framework
	7.1.3 Implementation and Evaluation

	7.2 Limitations
	7.3 Future Work
	7.3.1 Open Issues in Continuous User Involvement
	7.3.2 Social Software Engineering Decisions
	7.3.3 User Experience Applications


	A Interview Questions
	A.1 Project Information
	A.2 User Feedback - Current Landscape
	A.3 User Feedback - Current Workflow and Problems
	A.4 User Feedback - Potentials and Challenges
	A.5 Personal Information

	B List of Portneuf Sensors
	List of Figures
	List of Tables
	Bibliography

