
Chaordic Learning: A Case Study
Stephan Krusche

Technische Universität München
Munich, Germany
krusche@in.tum.de

Kirill Krinkin
Saint Petersburg Electrotechnical University

St. Petersburg, Russia
kirill.krinkin@fruct.org

Bernd Bruegge
Technische Universität München

Munich, Germany
bruegge@in.tum.de

Andreas Seitz
Technische Universität München

Munich, Germany
seitz@in.tum.de

Irina Camilleri
Technische Universität München

Munich, Germany
irina.camilleri@tum.de

Cecil Wöbker
Technische Universität München

Munich, Germany
woebker@in.tum.de

Abstract—Software engineering is an interactive, collaborative
and creative activity that cannot be entirely planned. Inspection
and adaption are required to cope with changes during the
development process. Software engineering education requires
practical application of knowledge, but it is challenging and time
consuming for instructors to evaluate the creation of innovative
solutions to problems. Current higher education practices lead
to a multitude of rules, guidelines and order. Instructors see
deviations of students as failures and limit the creative thinking
processes of students.

In this paper we describe chaordic learning, a self-organizing,
adaptive and nonlinear learning approach, to stimulate the
creative thinking of students. Instructors provide structure and
guidance, but also integrate freedom for self-organization and
self-guided learning and embrace innovation and creativity. De-
viations are seen as opportunities and failures as possibilities for
students to learn and improve. We introduced chaordic learning
into a games development course and a joint advanced student
school and describe the chaordic process of these courses as
case studies. Students in these courses report about an increased
intrinsic motivation, a higher level of self-organization and more
room for creativity leading to an improved learning experience
and more fun.

Keywords-Experiential Learning, Agile Methods, Creativity,
Chaos, Order, Self-guided Learning, Self-organization

I. INTRODUCTION

Software engineering (SE) has undergone several funda-
mental shifts since the term was first proposed in the 1960s
when software systems became larger and more complex to
develop [1]. Initially, the focus was on defined process control
and ordered processes to mimic established manufacturing
processes [1]. In recent years, the emphasis changed towards
empirical process control that embraces frequent inspection
and adaption to react to changing environments [2]. Software
development consists of experimental knowledge work where
creativity is important [3]. SE is the process of creating
software solutions that have - in their entirety - not been
developed before.

SE education requires practical application of knowledge
[4], [5], in particular interaction and collaboration [6]. Cur-
rent higher education practices lead to a multitude of rules,

guidelines and order, which in turn “makes creative teachers
and students feel less and less in place” [7]. University courses
focus too much on analytical and logical thinking, because this
is easier to teach and to grade.

Instructors follow a defined teaching approach and see de-
viations of students as failures. They prematurely set up struc-
tures (e.g. assignment requirements, syllabus, instructions)
without taking time to determine the desired learning outcomes
and how the process of learning should be conducted. When
all educational activities are well defined, students only follow
instructions, but do not use their creative and intuitive thinking
processes and do not learn to act themselves.

Some instructors even sanction creativity if students’ so-
lutions to exercises do not follow correctness criteria, even
if they include innovative aspects. In such cases, there is no
room for self-organization, as instructors fear this might lead
to chaos, in particular if students are unexperienced. This leads
to a gap between skills that current SE education provides and
skills that are required in industry and research.

Chaordic learning is an approach to overcome these prob-
lems by balancing education between chaos and order. Instruc-
tors define the learning environment and high-level learning
goals to provide structure and order. Students have the freedom
to choose the concrete learning activities and the solution
approaches to given problems to allow creativity, innovation
and self-guided learning. Instead of defining all learning steps,
instructors provide guidance in this approach and give feed-
back to the students’ learning progress. Examples of courses
following this idea are capstone courses as described in [8],
[9], and [10]. Capstone courses provide students with a real-
life experience to prepare them for their future career [11].

The paper is structured as follows. Section II provides
background information, defines the term chaordic, describes
the learning organization that focuses on individuals, and
presents agile methods as concrete practice for a chaordic
development process. In Section III, we define the chaordic
learning approach, which is based on a design process, and we
present its properties and its benefits. Section IV shows two
case studies, in which we applied chaordic learning, a games

To appear at ICSE 2017

development course and a joint advanced student school.
In Section V, we discuss other chaordic learning courses,
constructivism and design thinking as related work. Section VI
concludes the paper.

II. FOUNDATIONS

In the 1960s, software systems became larger and more
complex to develop [1]. Projects failed because development
concepts and methods were missing and teams worked to-
gether in rather chaotic and unstructured ways. The term
software engineering (SE) “was deliberately chosen as being
provocative, in implying the need for software manufacture to
be [based] on the types of theoretical foundations and practical
disciplines[,] that are traditional in the established branches of
engineering” [12], [1]. Detailed process models emerged that
describe the process of engineering software, resulting in a
structured software process. The aim was to bring order and
control into the development approach following strict rules
and avoiding deviations, which were seen as errors that need
to be corrected.

In the following years, software developers increasingly
recognized that too much order and control is counterpro-
ductive and that the essence of SE is to deal with changes:
defined process models are not capable of addressing this
need [13]. SE consists of experimental knowledge work where
creativity is important, including unexpected events, incidents
and uncertainty [3]. Software development is a complex pro-
cess with random variables, that cannot be defined completely
deterministic: “It is typical to adopt the defined (theoretical)
modeling approach when the underlying mechanisms by which
a process operates are reasonably well understood. When
the process is too complicated for the defined approach, the
empirical approach is the appropriate choice” [2].

As response, agile methods emerged with the philosophy
that software development should follow an empirical ap-
proach: still structured, but not entirely planned, and thus
providing more freedom to adapt to changes. Deviations, errors
and failures are seen as opportunities to inspect, adapt and
improve the methodology. If random variables such as uncer-
tainty and change are allowed, the process control is stochastic
(nondeterministic) and allows chaos. Stochastic control is not
solved analytically and deals with the existence of uncertainty
and chaos [14]. Empirical process control balances between
chaos (stochastic control) and order (defined control).

A. Software Engineering Education

Several pedagogic theories have been developed and inte-
grated into education. Educators recognized that SE education
requires practical application of knowledge [4], [5], in par-
ticular interaction and collaboration [6]. Experiential learning
is a methodology in which educators engage with learners in
direct experience to increase knowledge, develop skills, and
clarify values [15].

Problem-based orientation allows students to identify what
they know, what they need to know, and how and where
to access new information that leads to the resolution of a

particular problem [16]. It is one important aspect in capstone
courses [17].

The introduction of computers in education enables students
to learn through the delivery of content and instructions via
computer mediated activities, digital and online media [18]. It
promotes simultaneous, independent and collaborative learning
experiences.

In cooperative learning approaches, students work in groups
to complete tasks collectively towards a common goal and the
educator’s role changes from giving information to facilitating
learning [19].

Active learning is an educational approach to increase
involvement and excitement with the subject being taught.
Instead of learners acting as receivers of knowledge by pas-
sively listening to lectures, active learning puts the emphasis
on developing learner skills and engaging them in activities.

B. Chaordic

In 1995, Hock first coined the term chaord1 [20]. This
neologism is the combination of the words chaos and order,
meaning a state in between that adapts the principles and
properties of both. Hock shares his experiences in managing
organizations and concludes that a chaordic approach is
required in complex situations in order to facilitate innovation
and creativity.

“By chaord, I mean any self-organizing, adaptive,
non-linear complex system, wether physical, bio-
logical, or social, the behavior of which exhibits
characteristics of both order and chaos or loosely
translated to business terminology, cooperation and
competition.” [20]

Complex systems arise and thrive on the edge of chaos
with just enough order to give them pattern [21]. Chaord is
a universal concept that can be applied to different systems
and environments. The core principles of chaos and order
are essential for a chaordic system. There is an aversion to
disorder in today’s world [22], because disorder means a loss
of control. Since chaos can lead to disorder, it is important to
overcome the fear against disorder to make a positive use of
chaos, which is central to the idea of chaord. Chaos is used
to increase responsiveness and adaptivity to the environment
and order is used to keep the system stable and to make sure
that its boundaries are not violated.

Chaordic means organizing and shaping a system in a way
to be able to adapt to a changing environment. It can be applied
to different types of contexts [21]:

• Organization: working environment that is governed by
both structure and chaos leading to more innovation

• Business: organization that harmoniously blends charac-
teristics of competition and cooperation

• Leadership: combining induced and compelled behavior
in the relationship between a leader and a follower

• Education: approach that seamlessly blends theoretical
and experiential learning

1“Chaord” is a substantive, “chaordic” is the corresponding adjective.

To appear at ICSE 2017

Living systems thrive in a narrow band between

chaos and order …

CHAORD (kay-ord)

ORDERCHAOS CONTROL

 Fig. 1. Chaord is a state between chaos and order (adapted from

http://www.chaordic.org)

Organizational forms are still following industrial principles
defined more than a century ago [23]. Structure and order are
essential in these traditional organizational forms and are often
seen as more important than individuals which are treated
like gearwheels that either function or get replaced [20].
A chaordic organization however includes characteristics of
chaos and order at the same time. It focuses on the individual
people in the organization and allows them to innovate and to
think out of the box [24]. How decisions are managed plays
an important role in governing the organization effectively
[21]. Governance in chaordic organizations is distributed to
many different people and stakeholders. This is contrary to the
traditional, more hierarchical view of organizational structure.

A chaordic system, or a chaordic organization in particular,
is defined by the following characteristics [20]: power and
function of the system are distributed. There is no single
person controlling the whole system or governing all or-
ganizational functions. The system is self-organizing: there
is no external system or individual required to make the
original system last and function correctly. Collaboration and
competition are both integrated into the system. The system is
malleable and durable: it can adapt while staying successful in
a changing environment. The system is owned cooperatively
and equitably: everyone is involved in the system’s continuing
success.

C. Learning Organizations

The learning organization is “a form of organization that
enables the learning of its members in such a way, that
it creates positively valued outcomes, such as innovation,
efficiency, better alignment with the environment and com-
petitive advantage” [25]. While there used to be a divide
between individuals and their associated organizations, there is
now a consensus that being successful requires collaboration
with one another [26]. Individuals play a more important
role in today’s organizations and especially in how those
organizations learn and adapt. This has become important
since workers increasingly look for more flexible working
arrangement which in turn can increase their satisfaction and
commitment [27].

By adapting to the needs of individuals and helping them
produce knowledge, organizations can profit themselves. They
need to continuously listen to the wishes of their people and

transform accordingly. The individual’s knowledge can be used
to improve organizations or the products and services they
provide. The success of the individual is directly linked to the
success of the organization as a whole, because knowledge is
created when people interact with each other [26].

Learning is an activity of interdependent people working
collaboratively with each other [28]. A learning organization
is a place where people are “continually discovering how
they create their reality. And how they can change it” [29].
Companies applying the principles of learning organizations
act between chaos and order, so they are in a chaordic
state [20]. Enabling people to learn in these organizations
depends on two key factors. Organizations have to provide
the possibility and the options for their people to advance
themselves, while also providing the culture to learn in the
first place [29]. When organizations follow these principles,
both the organization itself and its individuals benefit from the
chaordic approach. By ensuring that the individual can learn
in a chaordic environment, the organization itself can become
a learning organization and can improve its efficiency. This is
especially important to be successful in the long-run.

D. Agile Methods

In the 1990’s, agile development methods emerged with
the philosophy that software developement should follow an
empirical process model. The empirical model for Scrum
described by Schwaber [30] is based on Ogunnaike’s definition
of a stochastic model [2]. It handles changes and failures as
opportunities: a quick reaction to these can lead to advantages
compared to competitors. The agile manifesto (visualized
between chaos and order in Figure 2) identified new ways
of developing software by moving the focus from complete
order in traditional development processes towards a more
lightweight methodology in between chaos and order [31].

Agile methods play an increasing role in SE [32] and in
its education [33]. They allow developers to stay creative
while working on complex problems and projects. A team
that applies agile methods is self-organizing: the team decides
about the concrete procedures, and learns from problems, risks,
and failures allowing a more chaotic way of thinking. There
are also members in the team, such as the scrum master, who
have control over the process by moderating and negotiating
with the rest of the team, leading to an ordered course of
action. The acceptance of failure is an important aspect of agile
methods. Realizing that a mistake has been made, learning
from it and iterating on the solution to fix the mistake is of
importance to the success in a complex software project.

Due to the application of empirical process control which
could also be called chaordic process control, agile methods
shifted the focus in SE from order (defined process control)
towards chaos (stochastic process control). They include a mix
of order and chaos and balance between both. On the one
hand, they provide a structured framework with principles such
as daily meetings with specific questions or procedures how
to organize iterations. On the other hand, they are open to
concrete methods, tools and workflows suggested by devel-

To appear at ICSE 2017

Individuals and
 interactions

Working
software

 Customer
collaboration

Responding to
 change

Light/agile

Chaord

Chaos

Processes
and tools

Comprehensive
documentation

 Contract
negotiation
Following
 a plan

Heavy

Order

Fig. 2. Agile methods are an instance of a chaordic setup in between order
and chaos.

opers, allow changes and facilitate creativity. Therefore, agile
methods are a concrete instance of a chaordic setup that has
a direct application and impact on the software development
process. The goal is to give freedom to the development team
while setting the necessary boundaries to control it and to lead
it into the right direction.

III. CHAORDIC LEARNING

Chaordic learning is an educational approach that “seam-
lessly blends theoretical and experimental learning” [20] and
includes aspects of order and chaos. In this context, structured
courses with detailed instructions represent order, while exper-
imental learning and educational innovation represent chaos.

While chaordic learning moves control to students, instruc-
tors still provide guidance2 to ensure that students understand
theory in the right way and to avoid misconceptions. Chaordic
learning puts the instructor and the students on the same level
to remove hierarchies and to improve collaboration. It includes
the idea of cognitive apprenticeship [35]: an apprentice (the
learner) observes the skills of a master (the educator) who
shows how a concept works in practice. Clarifying the thinking
process behind the application of the concept makes it easier
for the apprentice to imitate the behavior.

Chaordic learning does not require the abandonment of
structured learning, but a shift from traditional educational
approaches would require creating room for chaos. This can be
achieved by promoting creative problem solving experiments,
where students apply principles learnt in theory or propose
own new ideas. Experimentation and collaboration should be
rewarded, while instructors focus on personalization, cooper-
ation and informal learning.

Software development is the process of creating software
solutions that have never been created before in the same
concrete configuration. Within the context of SE education, de-
velopment of creative problem solving skills is not addressed
properly. We believe chaordic learning can bridge the gap
between the skills current education provides and those the
SE discipline requires. The encouragement of experimental
learning (chaos) teaches the creative skills required in SE. A
chaordic balance can be introduced in the form of project
courses, where instructors provide a rough structure for the

2Chaordic learning is not to be confused with unguided or minimal guided
learning approaches that fail to improve the learning experience [34].

learning environment and the learning goals and students work
in a self-organizing, adapting way to achieve them.

A. The Chaordic Design Process

We propose the following chaordic design process including
six steps to help instructors facilitate the creation of chaordic
learning environments. These steps were adapted, to an ed-
ucational context, based on the work of Hock on creating a
chaordic organization. It is important to point out that such
environments cannot be created by instructors alone, but rather
through collaboration between students and instructors, where
students take charge of their own learning.

1) Purpose: Define the learning objectives of the course
and a common understanding of what students aim to gain
upon completion. Questions, such as “Why are you here?”
often help illuminate purpose. This component is the key to
motivating students - educational efforts must feel meaningful.
Flexibility in course structure should allow for student input.
Depending on the content, students can be asked to narrow
down a set of requirements or choose technologies they feel
are suitable or wish to explore.

2) Principles: Discuss the fundamental beliefs of how
students and instructors shall conduct themselves in pursuit
of new knowledge. An example would be emphasis on the
positive outcome of learning from failure. Thus, experimenta-
tion can be seen as more valuable than a perfect solution. The
grading scheme should also reflect these principles whereby
students are not penalized for failure.

3) People: Identify people and institutions necessary to
achieve the defined purpose. Chaordic principles encourage
collaboration across program and institutional boundaries, with
government and industry, both national and international.
Students should consider engaging the broader community.
This mindset helps students appreciate the full context of their
learning experience, e.g. the context their software is being
developed in. A concrete example taken from agile practices
is the inclusion of the customer as participant of the team.

4) Concept: Create key guidance for interaction among
the participants in a generally flat chaordic hierarchy. Being
the chaordic equivalent of an organizational chart, it includes
forming teams and introducing student support mechanisms
(e.g. teaching assistants). Students can conceive a new orga-
nizational structure that is effective with respect to all team
members and that defines how work is distributed internally.
Teaching staff should be seen as facilitators and should explain
who, how and when students can ask for help. Individual roles
- such as those borrowed from agile practices, (e.g. scrum
master) could rotate.

5) Structure: Embed the learning goals, roles and responsi-
bilities in the course’s official structure. In a higher-education
context, it is the course description, assignment requirements,
due dates and credits awarded for completion. Assignment re-
quirements should be flexible to allow room for incorporating
new ideas or specifying detailed requirements. The grading
scheme should reflect and encourage experimentation.

To appear at ICSE 2017

6) Practices: Decide on the activities participants are re-
quired to undertake. There should be an emphasis to pro-
mote activities inspiring innovation. Mechanisms whereby
instructors negotiate with students about their work should be
established (e.g. by discussing status, impediments, promises).
Work itself e.g. could be organized by using a software
configuration management component, such as version control,
with changes being reviewed through pull requests [36]. A
series of meeting practices helps disseminate information.
A course-wide meeting could be used for teams to share
their progress, while regular team meetings allow internal
discussions of problems or ideas. Teaching staff can guide
students to employ best practices, but individual students or
teams are allowed to choose own internal team practices.

The chaordic design process is iterative and adaptive, so a
decision in each step should be reflected in all other steps.
Modifications or refinements of elements may shed light on
changes required in other elements. Over time, the environ-
ment is established when all elements are defined. Figure 3
shows the six steps of the chaordic design process combined
in a creative figure that exemplifies its ideation aspect.

Chaordic Learning
Environment

Purpose

Principles

PeopleStructure

Concept

Practices

Fig. 3. The chaordic design process includes six steps to facilitate the creation
of the chaordic learning environment.

The key to applying chaordic principles in an educational
setting is negotiating each of these steps with the students.
Students can choose to not use provided infrastructure, adopt
own practices or team roles. That way each of the choices
being made follows a deeper understanding of the options
and the rationale behind them. Instructors act as enablers and
moderators, who help students explore, rather than showing
them a well-trodden path. A quote by Hock also reflects this
well: “In the chaordic age success will depend less on rote
and more on reason; less on authority of the few and more
on the judgement of many; less on compulsion and more on
motivation; less on external control of people and more on
internal discipline” [21].

B. Properties

While these six steps in the chaordic design process help
to create chaordic courses, they do not necessarily include
chaotic properties and instructors might still focus too much
on structure and order. It is important to understand the
chaotic nature and to include it into the course. There are five
principles of chaos [37] that are prevalent in chaordic learning:

1) Consciousness: The essential ground state of learning
is mind, more than matter. Ideas are primary and drive the
learning experience of students.

2) Connectivity: The learning experience is related to its
environment and its context and cannot be seen as independent
element. Educators and learners interact and collaborate with
each other towards a common goal.

3) Indeterminacy: Learning cause and effect are inter-
twined. There is no single entity that can completely plan or
control what exactly is learned. While the learning process
is framed, no one is able to predict the exact next action in
the learning process. Guidance and feedback by instructors
determine the right direction.

4) Emergence: The learning experience is constantly grow-
ing more complex, more coherent and more differentiated,
but at the same time not descending into chaos. Students
create coherent networks and relationships between knowledge
through self-organization.

5) Dissipation: Small learning peer groups are being formed
and dissolved based on purpose creating dialogues between
students and instructors and generating new knowledge.

These chaos properties provide a mindset that should be
included in the design of chaordic courses. They make sure
that students evolve their creative skills. However, instructors
can not only focus on chaos properties, they also need to
incorporate structure into the courses, e.g. with milestones, in-
termediate deadlines and control points where students obtain
feedback and where they can evaluate their learning progress.
Examples would be daily or weekly meetings where students
report about their progress, their challenges and their promises,
while instructors listen and provide feedback and guidance.

C. Benefits

In our experience, chaordic learning leads to the following
benefits when it is applied properly in SE education:

1) Increased motivation: Students who can influence the
learning subject, methods and process, have a higher intrin-
sic motivation because they have control over their learning
experience and over the learning outcome.

2) Increased self-organization: As the instructor steps
aside, students have to act, organize themselves and are re-
sponsible for the progress. They have to find the right learning
activities and actively ask for feedback.

3) Less hierarchies: Students are treated on the same level
as instructors, leading to an improved discussion between
students and instructors. Students then come up with new ideas
and suggestions to form the learning process.

4) Improved learning from failures: Instructors create a
culture of successful failures: they emphasize that students are

To appear at ICSE 2017

allowed to make failures and to learn from these failures. This
lowers the pressure and allows students to experiment new
approaches and to think out of the box.

5) More room for creativity: Decreased pressure to suc-
ceed in every step facilitates out of the box thinking and the
application of new, innovative approaches.

It is important that instructors facilitate the chaordic learning
approach and provide guidance. In particular, unexperienced
students will not be able to immediately self-organize them-
selves. Instructors need to clearly communicate the chaordic
learning environment and the focus towards self-organization,
innovation and creativity. They ask students in the beginning of
the course to actively organize themselves and make the self-
organization part of the assessment. In the first weeks, they
help unexperienced students to organize themselves without
taking over the organization. Frequent inspection and adaption,
as in empirical process control, is required to control the
learning outcome and to prevent misconceptions.

IV. CASE STUDY

In this section, we present two courses in which we applied
chaordic learning to improve the learning experience of stu-
dents. The first course is on mobile games development, the
second course is an international student school on software
development for mobile platforms and the internet of things.

A. Games Development Course

The games development course is a two-week block course
with up to 40 students. We described the structure of this
course in [38]. In this paper, we summarize the course and
focus on its chaordic learning characteristics. We describe
course design and learning objectives using the six steps of
the chaordic design process and the outcome of the course.

1) Chaordic Design Process: While the course is structured
in the first week where students learn programming and games
development, it provides a lot freedom and facilitates self-
organization in the second week.

Purpose: The course is focused on learning games de-
sign and iOS app development using the Swift programming
language. It includes various topics students get to explore:
programming, use of platform specific frameworks, distributed
version control, game design, application of design and archi-
tectural patterns, and user interface design for games.

Depending on previous experience and interest, students
participate in the beginner or advanced modes. The beginner
mode targets students who have no experience with Swift and
iOS development. However, the course assumes that beginners
have basic knowledge of an object-oriented programming
language and UML. During the first week, the focus for these
students is on learning Swift, the use of iOS frameworks
and the Xcode IDE. In the second week, students apply their
knowledge in small team projects.

In advanced mode, students participate as teaching assistants
(TAs) who have already acquired knowledge of the devel-
opment environment, including programming language and
tool chain. The objectives for TAs include specializing in a

technical topic, such as sprite animation within games, and
helping beginners during the course. To achieve this, TAs
prepare an interactive tutorial on their chosen topic under the
supervision of an instructor and present this during the first
week of the course. They also guide teams and individuals to
apply games development practices in their projects to learn
from known methods that achieve best results.

All students practice social and non-technical skills such
as working in a team, presenting, communicating and being
proactive. Learning objectives and assessment structure of the
course are made clear on the first day. During the introduction
round, students share “Why are they here?” and what they wish
to gain from attending the course. This helps choose topics of
interest, set personal goals and illuminate the purpose for the
students.

Principles: Students can choose their own game idea and
select the programming concepts, frameworks and technolo-
gies they want to apply for their game. This increases the
motivation of the students because they can try their own ideas
without limiting their creativity. Ambitious students might go
for more complex 3D technologies, while others prefer the
development of simple jump and run games in 2D.

In addition, they have the ability to adapt the game idea
during the development. Instructors and TAs provide guidance:
students should implement a simple game with easy to apply
technologies that is extensible with new features later on.
This guidance should prevent them from starting with overly
complex games they would not be able to implement in a
week. It facilitates the prototyping idea that is important in
today’s SE practices. In the intermediate milestone in the
second week, the teams present the game idea and justify the
chosen technologies. They obtain feedback and decide on their
own whether and how to include it.

While the first week provides basic knowledge about
game development techniques, students need to obtain further
knowledge on their own for details of a specific technique by
reading references or by using further tutorials. Students also
need to organize their work in teams on their own.

People: Students have to interact with instructors, TAs and
their peer students. Two instructors organize the course, one
is responsible for introducing Swift, the other one is familiar
with games development. Instructors select students, prepare
presentations and set up infrastructure. Four to six TAs help
in the organization. Game experts from industry provide help
for the design of graphics and animations.

Concept: The course promotes a flat hierarchy between
instructors, TAs and students and facilitates feedback in both
directions, from students to teaching staff and from teaching
staff to students. This increases the commitment and the
motivation of students and decreases communication barriers.

Structure: The structure of the course is defined by its
schedule in the first week and its milestones in the second
week. In the first week, instructors and TAs give three tutorials
per day based on interactive learning [39] that are required
for games development. These tutorials are 90 min long and
include a mix of theory, examples, exercises, sample solutions

To appear at ICSE 2017

and reflections about the taught concept and its usefulness in
different programming situations. During a tutorial, TAs walk
around and help students if they face problems. After a tutorial,
students get 30 min to solve an exercise on their own that is
based on the tutorial content.

In the second week, students build teams to develop their
own game idea. They face several milestones: start of devel-
opment, intermediate feedback and final presentation. These
milestones are made clear on the first day. Otherwise, the stu-
dents can freely choose when, how and where to develop their
game providing freedom and a necessity to self-organization.
The intermediate milestone is two days after the start of the
second week, where the teams informally present their ideas
and current progress.

The course phase ends with the final presentations of all
teams, which are recorded. Students receive the videos and
obtain feedback on content and delivery from the TAs and
the instructors. Students are assessed on the following criteria
in a descending emphasis: originality and complexity of the
game, how well it is implemented, how it was designed
and on an additional documentation where the students show
UML diagrams and explain those. Students can receive the
best grade with both - an unfinished game using complex
technologies and a simple game with completed functionality.
This assessment scheme is made clear to the students in
the beginning of the course, so students are encouraged to
experiment knowing that the difficulty of their choices is taken
into account during assessment.

Practices: The course does not formally present project
management techniques such as the agile methodology Scrum
[30] to avoid an increase of its complexity. Instead, only some
of the practices, such as stand-up meetings, are introduced to
students. These are used to stay organized by presenting the
minimum viable products throughout the day. Students work in
pairs for one week which encourages the cooperative and self-
guided learning process: they work towards a common goal
and have the freedom to organize themselves however they
want. This gives them the confidence in their programming
abilities, required to build larger applications, while at the
same time not limiting them to mere implementation of small
programming assignments.

2) Outcome: At the end of the course, each team presents
their game in a short Pecha Kucha presentation [40] showing
20 slides, each in 20 seconds with automatic transitions.
During the presentation, they focus on the game idea, the
proposed game features, the software architecture, the object
design, the used technologies and frameworks, status and
outlook. In addition, they include a demo of the game where
they show the most interesting features.

After the course, instructors encourage and further accom-
pany students to finalize and submit their game to the iOS
AppStore. Until now, 18 teams published their games.

Our evaluations show that students appreciate a great learn-
ing experience with practical aspects that they can further
use in their career, as well as the possibility to work self-
organized and to integrate their own ideas. They improve their

SE abilities, in particular object-oriented programming, and
their soft skills with the help of games development and they
have a lot of fun.

B. International Student School

The second course is a one week course with 20 students
and four instructors. The course on SE in the Joint Advanced
Student School (JASS) has been conducted for the third time
in March 2016, in St. Petersburg, Russia in the office of
JetBrains3, following two previous courses in 2008 and 2012.
The idea is to bring together students with different cultural
background (Germany and Russia), to work together on inno-
vative topics in SE in a chaordic manner. 10 German students
from Munich and 10 Russian students from St. Petersburg
participated in 2016. We describe course design and learning
objectives using the six steps of the chaordic design process
and the outcome of the course.

1) Chaordic Design Process: The topic of JASS 2016 was
“software development for mobile platforms and the internet of
things (IoT)”. Students are organized into balanced teams, each
with four students (two Russian and two German students), to
work on small projects relevant to this topic for one week
while also spending time on sightseeing and team formation.
While the project topics are roughly defined by the instructors,
the teams have the freedom to adapt the topics and to include
their own ideas.

Purpose: Students learn to develop innovative apps for
mobile and IoT platforms and get in contact with technologies,
such as iOS, Android, micro-controllers, drones, and sensors.
This combination enables new scenarios and requires the
ability to connect sensors of IoT devices with visualization
components and sensors on mobile devices. Students acquire
soft skills, gain experiences with international teams and
become familiar with latest innovations and technologies.
Participants collect experiences in global SE by working in
international teams.

Principles: At the core of the educational offering is a
more engaging teaching method that comes with less control
and moderation and facilitates creativity. The freedom of
choice with regards to tools, processes and technologies forces
students to organize themselves as a team and to overcome the
problems on their own. Students can choose the project topic
and influence the problem statement and the requirements.
This allows them to include their own ideas and to try out
new, innovative approaches.

People: Four instructors organize the course. They arrange
the travel, housing, working environment and catering. Al-
though the project environment is established, no strict rules,
nor processes of how the projects should evolve are defined.
Students apply for the school by providing personal details
and a short motivational letter. The instructors review these
applications and select a heterogenous group of students with
different levels of experience.

3JetBrains Research: https://research.jetbrains.org

To appear at ICSE 2017

Concept: The course promotes a flat hierarchy between
instructors and students and facilitates feedback in both di-
rections. This increases commitment and motivation and de-
creases communication barriers: No hierarchies within the
team and flat hierarchies between instructors and students.

Structure: The course is scheduled for six days. Students
spend about four days for development and two days for
sightseeing and self-organized team formation events. The
course starts with a short introduction round of the partici-
pants, followed by the presentations of the project ideas.
The projects are framed upfront by the instructors in a short
problem statement that is handed out to the students.

Instructors emphasize that the given problem statements are
only starting points and that the students can integrate their
own ideas. Relevant hardware and software needed to work
on the different projects (e.g. drones, sensors, beacons and
mobile devices) are provided to the students. After the team
assignment, instructors conduct an icebreaker to lower barriers
between team members. Teams organize themselves, choosing
which tools and processes to use, and distributing responsibili-
ties. Teams receive regular feedback in a daily standup meeting
where they report on progress and impediments, and promise
what they will achieve until the next standup meeting. These
meetings are similar to standup meetings in Scrum [30].

In a rotating manner each team member reports on its
team’s progress. The discussion with instructors and other
team members is considered as valuable feedback. On the last
day of the school, each team presents their project including
the design of the system, problem description, motivation,
introduction of team members and a live demo. Assessment
is based on the final presentation and demonstration of the
app functionality. As with the games development course’s
assessment structure, difficulty reflected in students’ choices
with respect to technology and functionality is rewarded.
Aspects like motivation, personal progress, team skills and
quality of the final presentation are also considered in addition
to the project functionality. The course is not part of the
curriculum: all students participate voluntarily.

Practices: In line with the agile manifesto, the school fo-
cuses more on individuals and interactions, than processes and
tools and aims for a working prototype instead of documen-
tation. Daily standup meetings structure the communication
between instructors and students. Instructors are available for
additional questions and guidance. Social activities are an
important aspect of the course. All participants have breakfast,
lunch and dinner together and go out in the evenings. This
motivates the students and strengthens the international teams.
The school does not focus on formal management processes,
so it is up to the students to organize themselves and work as
team to present a viable product at the end of the school.

2) Outcome: After a week of design, development and
integration, all teams presented their projects. Students also
produce a short, creative trailer to visualize the project idea.
The following five projects were presented in 2016:

Multimodel iNTeraction (MiNT): A modeling tool which
facilitates real-time collaboration on models during early stage

requirements engineering. MiNT allows to collaborate on
the creation and editing of informal models, and enables
collaborative modeling across iOS and Android devices.

Quadcopter Autopilot: The goal of this project was the
creation of an app that allows to capture dynamic scenes using
a quadcopter autopilot in several operation modes.

KneeHapp - Rehabilitation Monitoring on the Wrist: Knee-
Happ is a smart knee bandage that aims to support patients
suffering from ligament ruptures. Patients perform required
exercises correctly and provide relevant metrics to a doctor
over a smartphone app to enable better treatment decisions
[41]. KneeHapp Watch extends the smartphone app with a
component for the Apple Watch. The smart watch enables the
display of real time exercise data directly on a patient’s wrist
improving the user experience during exercises.

Octopus - Mobile First Responder for Emergencies: Oc-
topus is a sensor system for optimizing the treatment in
emergency situations. Octopus consists of a set of hardware
sensors (e.g. heart rate, breathing, brain activity sensor) and
mobile devices that are used to collect patient data inside the
ambulance while the patient is transported to the hospital.

Geo Quest Travel Game: The smartphone app helps trave-
lers to plan city trips with regard to points of interest and
food recommendations. It creates individual quests to make
city trips more informative and interesting.

C. Discussion
Chaordic courses benefit from flat hierarchies, but also

need trust to function properly. Instructors need to be able
to move control over the teaching and learning process to
students, while still providing enough guidance to keep the
learning outcome on a qualitatively high level. It is essential
for instructors to provide guidances and feedback to students to
control the learning outcome [34]. Instructors need to identify
situations where students are learning incorrect approaches.
Then, they need to interrupt the process and guide the students
back to the correct path. Students need to be comfortable with
openness and self-organization to benefit from the chaordic
education approach. If students prefer structured courses where
all instructions are provided, the chaordic approach will fail.

To summarize, it is essential for students to actively partici-
pate in the process and to contribute their own opinions and
ideas to the course. Shy students may have an issue with the
chaordic approach and should be especially treated to get out
of their comfort zone to make sure that they also succeed. We
evaluated the case studies in informal discussions and have
received many positive comments about the chaordic learning
approach. Students have reported an increased motivation,
higher level of self-organization and more room for creativity.
They appreciate the openness of the courses and the low
hierarchies between instructors and students. In particular, they
like that they can try out new approaches and have the freedom
to make failures and to learn from successful failures.

V. RELATED WORK

In this section, we relate our chaordic learning approach
to another chaordic learning context, describe the relation

To appear at ICSE 2017

between chaordic learning and constructivism and show how
design thinking relates to chaordic learning.

A. Chaordic Learning Context

Leigh argues that “structured activities have the potential to
create unpredictable learning contexts” [22]. Simulations and
games can be used in cooperation with chaordic approaches
inside of a traditional classroom setting. Like in our case study,
instructors shift from an orchestrating role to a supporting one.

Leigh uses open simulations, which come with a high
uncertainty regarding the possible outcome. She focuses how
the chaos framework can be useful in understanding com-
plex interactions. These complex interactions can occur when
giving up control over the learning process. Furthermore,
Leigh describes what it means to give control away as an
instructor and how trying to reestablish order can actually
hinder the process of chaordic learning itself. Depending
on how instructors react to chaotic circumstances within the
chaordic learning experience, the approach can either fail or
succeed. It might be difficult to create a positive experience
for instructors since they have to adapt their teaching style to
a new approach and since transferring control to students can
be intimidating.

Our paper focuses on SE education in particular and the dif-
ferent organizational structures that surround it. Furthermore,
we directly apply the chaordic organization principles by Hock
to the learning contexts and focus on how to give control to
students. One of the key aspects is how instructors can steer
this process and which decisions they allow the students to
make on their own. The students in our chaordic courses have
freedom to choose different aspects in a software project and
can also choose their own responsibilities in this process. The
distribution of the decisions, between instructors and students,
play a major role in a chaordic learning approach.

B. Chaordic Learning and Constructivism

Desouza identified the role of ‘Radical Engineers‘ in [42],
who are dealing with chaotic requirements, opportunities and
problems; they allow projects to incorporate innovative ideas
and tools. In this work, the authors do not use the term
chaordic, but incorporate the idea behind it. Their conclusion
is that working in a chaordic manner is essential for software
development projects to provide flexibility to students and to
develop a corresponding set of skills. The learning process
itself has a chaordic nature. Vygotskii in his works [43]
pointed that chaos (and chaos ordering) is a base for learning
and acquiring new knowledge.

The growing trend in SE is that development happens
under conditions of notable uncertainty. There are no standard
rules or methods for setting up the development process itself
because it is hard to define the concrete roles which are
distributed in the team. Veli-Pekka [44] suggested the follow-
ing organizational pattern: “develop the development culture
before process” and after that let people be self organized.

Uncertainty in requirements and environment requires to ex-
periment not only before the development process was set up,

but even during the development. According to Thomke [45],
an innovative process (and we believe, that software develop-
ment is about innovation) encompasses success and failure; it
is an iterative process of understanding what does work and
what does not. The obvious consequence is that the learning
process should have a similar chaordic structure, i.e. incorpo-
rate failures and successes and learn from experimentation to
create successful failures.

Learning by experimentation is a philosophical viewpoint
covered in the constructive approach that tries to describe
the nature of learning [46], [47]. It focuses on hands-on ap-
proaches where students experiment with concrete problems,
try out methods and techniques and learn from the reflection
about their usage. Students then make their own inferences,
discoveries and conclusions and adapt the behavior. As such,
constructivism promotes the chaos side of the chaordic learn-
ing process and influences the idea of the chaordic learning
approach described in this paper.

C. Design Thinking

Design thinking was originally explored and developed as
a human-centric methodology to solve complex creative prob-
lems closely associated with conceptual design [48]. Different
versions of the design thinking process exist. All describe
iterative phases that are not necessarily ordered and can occur
simultaneously. One of the latest views of the process proposed
by Meinel and Leifer has five phases: (re)defining the problem,
need-finding and benchmarking, ideating, building, testing. In
the past decade, design thinking has gained attention as a
meta-disciplinary methodology relevant in a wide range of
contexts beyond the traditional preoccupation of designers
[49]. It has been proposed as a “team-based learning process
[which] offers teachers support towards practice-oriented and
holistic modes of constructivist learning in projects” [50].

Design thinking is an iterative process that guides the
teacher to “realize what is recommended theoretically in con-
structivist theory” [50]. In this sense, design thinking is similar
to chaordic learning and can also be applied to SE courses
to include creativity and innovation. In order to reconcile
the relation between chaordic learning and design thinking,
as applied in education, we consider chaordic learning as an
overarching educational approach. Design thinking is a process
that could be employed as one of the practices (described
in Section III-A) when the chaordic learning environment is
being established. In our courses, we use agile methods within
the practices of the chaordic design process.

VI. CONCLUSION

Chaordic learning is an approach to balance education
between order and chaos to stimulate analytical and creative
thinking processes. Instructors provide structure and guidance,
but also integrate freedom for self-organization and self-
guided learning and embrace innovation and creativity, so
that students learn important management and communication
skills. The chaordic approach is similar to agile methods
following empirical process control. It allows instructors to

To appear at ICSE 2017

react to specific situations, while providing an overall plan in
their teaching approach. When integrating chaordic learning
into their courses, instructors still control the learning outcome
and avoid misconceptions.

Chaordic learning is particularly helpful in SE education,
where practical application of knowledge, interaction and
collaboration is required. Instructors view deviations as oppor-
tunities and failures as possibilities for students to learn and
improve. We introduced chaordic learning into two courses,
a games development course and a joint advanced student
school. Students report an increased intrinsic motivation, a
higher level of self-organization and more room for creativity
which led to an improved learning experience and more fun.

REFERENCES

[1] M. Mahoney, “The roots of software engineering,” CWI Quarterly,
vol. 3, no. 4, pp. 325–334, 1990.

[2] B. A. Ogunnaike and W. H. Ray, Process Dynamics, Modeling, and
Control. Oxford University Press, 1994, vol. 1.

[3] V. Basili, “The role of experimentation in software engineering: past,
current, and future,” in Proceedings of the 18th international conference
on Software engineering. IEEE, 1996, pp. 442–449.

[4] T. Connolly, M. Stansfield, and T. Hainey, “An application of games-
based learning within software engineering,” British Journal of Educa-
tional Technology, vol. 38, no. 3, pp. 416–428, 2007.

[5] D. Shaffer, “Pedagogical praxis: The professions as models for postin-
dustrial education,” Teachers College Record, vol. 106, no. 7, pp. 1401–
1421, 2004.

[6] J. Whitehead, “Collaboration in software engineering: A roadmap,”
Future of Software Engineering, vol. 7, pp. 214–225, 2007.

[7] I. Mulder, “A pedagogical framework and a transdisciplinary design ap-
proach to innovate hci education,” Interaction Design and Architecture(s)
Journal, no. 27, pp. 115–128, 2015.

[8] J. Tomayko, “Teaching a project-intensive introduction to software
engineering,” DTIC Document, Tech. Rep. CMU/SEI-87-TR-20, 1987.

[9] B. Bruegge, J. Cheng, and M. Shaw, “A software engineering project
course with a real client,” Carnegie Mellon University, Software Engi-
neering Institute, Tech. Rep. CMU/SEI-91-EM-4, 1991.

[10] B. Bruegge, S. Krusche, and L. Alperowitz, “Software engineering
project courses with industrial clients,” ACM Transactions on Computing
Education, vol. 15, no. 4, pp. 17:1–17:31, 2015.

[11] A. Dutson, R. Todd, S. Magleby, and C. Sorensen, “A review of liter-
ature on teaching engineering design through project-oriented capstone
courses,” Journal of Engineering Education, vol. 86, no. 1, pp. 17–28,
1997.

[12] P. Naur, B. Randell, and J. Buxton, Software engineering: concepts and
techniques: proceedings of the NATO conferences. Petrocelli/Charter,
1976.

[13] M. Lehman and L. Belady, Program evolution: processes of software
change. Academic Press, 1985.

[14] M. Kellner, “Software process modeling support for management plan-
ning and control,” in Proceedings of the 1st International Conference
on the Software Process. IEEE, 1991, pp. 8–28.

[15] D. Kolb, Experiential learning: Experience as the source of learning
and development. Prentice Hall, 1984, vol. 1.

[16] D. Boud and G. Feletti, The challenge of problem-based learning.
Psychology Press, 1998.

[17] J. Dunlap, “Problem-based learning and self-efficacy: How a capstone
course prepares students for a profession,” Educational Technology
Research and Development, vol. 53, no. 1, pp. 65–83, 2005.

[18] R. Garrison and H. Kanuka, “Blended learning: Uncovering its transfor-
mative potential in higher education,” The internet and higher education,
2004.

[19] D. Johnson et al., Cooperative Learning: Increasing College Faculty
Instructional Productivity. Higher Education Report. ERIC, 1991.

[20] D. Hock, “The chaordic organization: Out of control and into order,”
World Business Academy Perspectives, vol. 9, no. 1, pp. 5–18, 1995.

[21] D. Hock, “The art of chaordic leadership,” Leader to leader, vol. 15,
no. Winter, pp. 20–6, 2000.

[22] E. Leigh and L. Spindler, “Simulations and games as chaordic learning
contexts,” Simulation & Gaming, vol. 35, no. 1, pp. 53–69, 2004.

[23] F. W. Taylor, The principles of scientific management. Harper, 1914.
[24] D. Hock, Birth of the chaordic age. Berrett-Koehler Publishers, 1999.
[25] M. Huysman, “Balancing biases: A critical review of the literature on

organizational learning,” SAGE Publications, 1999.
[26] J. Pfeffer and J. Veiga, “Putting people first for organizational success,”

The Academy of Management Executive, vol. 13, no. 2, pp. 37–48, 1999.
[27] C. Kelliher and D. Anderson, “Doing more with less? flexible working

practices and the intensification of work,” Human Relations, vol. 63,
no. 1, pp. 83–106, 2010.

[28] R. Stacey, “Learning as an activity of interdependent people,” The
Learning Organization, vol. 10, no. 6, pp. 325–331, 2003.

[29] F. van Eijnatten and G. Putnik, “Chaos, complexity, learning, and the
learning organization: towards a chaordic enterprise,” The Learning
Organization, vol. 11, no. 6, pp. 418–429, 2004.

[30] K. Schwaber, “Scrum development process,” in Proceedings of the
OOPSLA Workshop on Business Object Design and Information, 1995.

[31] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for agile software development,” The Agile Alliance, 2001.

[32] VersionOne, “9th annual state of agile development survey,” 2015,
retrieved January 08, 2016 from https://www.versionone.com/pdf/
state-of-agile-development-survey-ninth.pdf.

[33] D. Rico and H. Sayani, “Use of agile methods in software engineering
education,” in Agile Conference, 2009, pp. 174–179.

[34] P. Kirschner, J. Sweller, and R. Clark, “Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching,”
Educational Psychologist, vol. 41, no. 2, pp. 75–86, 2006.

[35] A. Collins, J. S. Brown, and A. Holum, “Cognitive apprenticeship:
Making thinking visible,” American educator, 1991.

[36] S. Krusche, M. Berisha, and B. Bruegge, “Teaching Code Review
Management using Branch Based Workflows,” in Proceedings of the
38th International Conference on Software Engineering. IEEE, 2016.

[37] L. Fitzgerald, “Chaos: The lens that transcends,” Journal of Organiza-
tional Change Management, vol. 15, no. 4, pp. 339–358, 08 2002.

[38] S. Krusche, B. Reichart, P. Tolstoi, and B. Bruegge, “Experiences from
an experiential learning course on games development,” in Proceedings
of the 47th ACM Technical Symposium on Computing Science Education
(SIGCSE). ACM, 2016, pp. 582–587.

[39] S. Krusche, A. Seitz, J. Börstler, and B. Bruegge, “Interactive learning:
Increasing student participation through shorter exercise cycles,” in
Proceedings of the 19th Australasian Computing Education Conference.
ACM, 2017, pp. 17–26.

[40] A. Beyer, “Improving student presentations pecha kucha and just plain
powerpoint,” Teaching of Psychology, 2011.

[41] J. Haladjian, Z. Hodaie, H. Xu, M. Yigin, B. Bruegge, M. Fink, and
J. Hoeher, “Kneehapp: A bandage for rehabilitation of knee injuries,”
in Proceedings of the International Joint Conference on Pervasive and
Ubiquitous Computing. ACM, 2015, pp. 181–184.

[42] K. Desouza and Y. Awazu, “Managing radical software engineers:
Between order and chaos,” in Human and Social Factors of Software
Engineering. ACM, 2005, pp. 1 – 5.

[43] L. S. Vygotsky and R. W. Rieber, The collected works of LS Vygotsky:
Volume 1: Problems of general psychology, including the volume Think-
ing and Speech. Springer Science & Business Media, 1988, vol. 1.

[44] V.-P. Eloranta, “Patterns for controlling chaos in a startup,” in Proceed-
ings of the 8th Nordic Conference on Pattern Languages of Programs.
ACM, 2014, pp. 1:1–1:8.

[45] S. H. Thomke, Experimentation Matters: Unlocking the Potential of New
Technologies for Innovation. Boston, MA, USA: Harvard Business
School Press, 2003.

[46] D. Jonassen, K. Peck, and B. Wilson, Learning with technology: A
constructivist perspective. Prentice Hall, 1999.

[47] T. Duffy and D. Jonassen, Constructivism and the Technology of
Instruction: A Conversation. Psychology Press, 1992.

[48] P. Rowe, “Design thinking,” 1987.
[49] L. Kimbell, “Rethinking design thinking: Part I,” Design and Culture,

vol. 3, no. 3, pp. 285–306, 2011.
[50] A. Scheer, C. Noweski, and C. Meinel, “Transforming constructivist

learning into action: Design thinking in education,” Design and Tech-
nology Education: An International Journal, vol. 17, no. 3, 2012.

To appear at ICSE 2017

